Spectrum of Wave Forcing Associated with the Annual Cycle of Upwelling at the Tropical Tropopause

Joowan Kim National Center for Atmospheric Research,* Boulder, and Colorado State University, Fort Collins, Colorado

Search for other papers by Joowan Kim in
Current site
Google Scholar
PubMed
Close
,
William J. Randel National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by William J. Randel in
Current site
Google Scholar
PubMed
Close
,
Thomas Birner Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas Birner in
Current site
Google Scholar
PubMed
Close
, and
Marta Abalos National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Marta Abalos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The zonal wavenumber spectrum of atmospheric wave forcing in the lower stratosphere is examined to understand the annual cycle of upwelling at the tropical tropopause. Tropopause upwelling is derived based on the wave forcing computed from ERA-Interim using the momentum and mass conservation equations in the transformed Eulerian-mean framework. The calculated upwelling agrees well with other upwelling estimates and successfully captures the annual cycle, with a maximum during Northern Hemisphere (NH) winter. The spectrum of wave forcing reveals that the zonal wavenumber-3 component drives a large portion of the annual cycle in upwelling. The wave activity flux (Eliassen–Palm flux) shows that the associated waves originate from the NH extratropics and the Southern Hemisphere tropics during December–February, with both regions contributing significant wavenumber-3 fluxes. These wave fluxes are nearly absent during June–August. Wavenumbers 1 and 2 and synoptic-scale waves have a notable contribution to tropopause upwelling but have little influence on the annual cycle, except the wavenumber-4 component. The quasigeostrophic refractive index suggests that the NH extratropical wavenumber-3 component can enhance tropopause upwelling because these planetary-scale waves are largely trapped in the vertical, while being refracted toward the subtropical upper troposphere and lower stratosphere. Regression analysis based on interannual variability suggests that the wavenumber-3 waves are related to tropical convection and wave breaking along the subtropical jet in the NH extratropics.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Joowan Kim, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: joowan@ucar.edu

Abstract

The zonal wavenumber spectrum of atmospheric wave forcing in the lower stratosphere is examined to understand the annual cycle of upwelling at the tropical tropopause. Tropopause upwelling is derived based on the wave forcing computed from ERA-Interim using the momentum and mass conservation equations in the transformed Eulerian-mean framework. The calculated upwelling agrees well with other upwelling estimates and successfully captures the annual cycle, with a maximum during Northern Hemisphere (NH) winter. The spectrum of wave forcing reveals that the zonal wavenumber-3 component drives a large portion of the annual cycle in upwelling. The wave activity flux (Eliassen–Palm flux) shows that the associated waves originate from the NH extratropics and the Southern Hemisphere tropics during December–February, with both regions contributing significant wavenumber-3 fluxes. These wave fluxes are nearly absent during June–August. Wavenumbers 1 and 2 and synoptic-scale waves have a notable contribution to tropopause upwelling but have little influence on the annual cycle, except the wavenumber-4 component. The quasigeostrophic refractive index suggests that the NH extratropical wavenumber-3 component can enhance tropopause upwelling because these planetary-scale waves are largely trapped in the vertical, while being refracted toward the subtropical upper troposphere and lower stratosphere. Regression analysis based on interannual variability suggests that the wavenumber-3 waves are related to tropical convection and wave breaking along the subtropical jet in the NH extratropics.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Joowan Kim, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: joowan@ucar.edu
Save
  • Abalos, M., W. J. Randel, and E. Serrano, 2012: Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere. Atmos. Chem. Phys., 12, 11 50511 517, doi:10.5194/acp-12-11505-2012.

    • Search Google Scholar
    • Export Citation
  • Abalos, M., W. J. Randel, and E. Serrano, 2014: Dynamical forcing of subseasonal variability in the tropical Brewer–Dobson circulation. J. Atmos. Sci., 71, 34393453, doi:10.1175/JAS-D-13-0366.1.

    • Search Google Scholar
    • Export Citation
  • Abalos, M., B. Legras, F. Ploeger, and W. J. Randel, 2015: Evaluating the advective Brewer–Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. Atmos., 120, 75347554, doi:10.1002/2015JD023182.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, doi:10.5194/acp-11-817-2011.

    • Search Google Scholar
    • Export Citation
  • Brewer, A., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, doi:10.1002/qj.49707532603.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., R. R. Garcia, W. J. Randel, and D. R. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67, 23312340, doi:10.1175/2010JAS3433.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and L. Sun, 2011: Mechanisms of the tropical upwelling branch of the Brewer–Dobson circulation: The role of extratropical waves. J. Atmos. Sci., 68, 28782892, doi:10.1175/JAS-D-11-044.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513, doi:10.1175/JAS3486.1.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. London, 236A, 187193, doi:10.1098/rspa.1956.0127.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim project. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 30 Mar 2014, doi:10.5065/D6CR5RD9.

  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., P. H. Haynes, and P. M. Forster, 2011: The annual cycle in lower stratospheric temperatures revisited. Atmos. Chem. Phys., 11, 37013711, doi:10.5194/acp-11-3701-2011.

    • Search Google Scholar
    • Export Citation
  • Garcia, R., 1987: On the mean meridional circulation of the middle atmosphere. J. Atmos. Sci., 44, 35993609, doi:10.1175/1520-0469(1987)044<3599:OTMMCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garny, H., M. Dameris, W. Randel, G. E. Bodeker, and R. Deckert, 2011: Dynamically forced increase of tropical upwelling in the lower stratosphere. J. Atmos. Sci., 68, 12141233, doi:10.1175/2011JAS3701.1.

    • Search Google Scholar
    • Export Citation
  • Gille, J., L. Lyjak, and A. Smith, 1987: The global residual mean circulation in the middle atmosphere for the northern winter period. J. Atmos. Sci., 44, 14371452, doi:10.1175/1520-0469(1987)044<1437:TGRMCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2013: On the signatures of equatorial and extratropical wave forcing in tropical tropopause layer temperatures. J. Atmos. Sci., 70, 10841102, doi:10.1175/JAS-D-12-0163.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., M. McIntyre, T. Shepherd, C. Marks, and K. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651679, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-scale Dynamical Processes in the Atmosphere, B. Hoskins and R.P. Pearce, Eds., Academic Press, 127–168.

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., H. Hamada, and K. Miyazaki, 2009: Comparisons of Brewer–Dobson circulations diagnosed from reanalyses. J. Meteor. Soc. Japan, 87, 9971006, doi:10.2151/jmsj.87.997.

    • Search Google Scholar
    • Export Citation
  • Jucker, M., S. Fueglistaler, and G. K. Vallis, 2013: Maintenance of the stratospheric structure in an idealized general circulation model. J. Atmos. Sci., 70, 33413358, doi:10.1175/JAS-D-12-0305.1.

    • Search Google Scholar
    • Export Citation
  • Kerr-Munslow, A. M., and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part I: ECMWF analyses. J. Atmos. Sci., 63, 14101419, doi:10.1175/JAS3697.1.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). National Center for Atmospheric Research Tech. Note NCAR/TN-420+STR, 159 pp., doi:10.5065/D6FF3Q99.

  • Kim, J., and S.-W. Son, 2015: Formation and maintenance of the tropical cold-point tropopause in a dry dynamic-core GCM. J. Atmos. Sci., 72, 30973115, doi:10.1175/JAS-D-14-0338.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mote, P., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 39894006, doi:10.1029/95JD03422.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63, 14201431, doi:10.1175/JAS3698.1.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., and M. J. Alexander, 2014: The residual-mean circulation in the tropical tropopause layer driven by tropical waves. J. Atmos. Sci., 71, 13051322, doi:10.1175/JAS-D-13-0100.1.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 893809.

  • Plumb, R. A., and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56, 868890, doi:10.1175/1520-0469(1999)056<0868:TBDCDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Postel, G., and M. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359373, doi:10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, doi:10.1038/ngeo1733.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2015: Variability of zonal mean tropical temperatures derived from a decade of GPS radio occultation data. J. Atmos. Sci., 72, 12611275, doi:10.1175/JAS-D-14-0216.1.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152, doi:10.1175/1520-0469(2002)059<2141:TDUITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65, 35843595, doi:10.1175/2008JAS2756.1.

    • Search Google Scholar
    • Export Citation
  • Reed, R., and C. Vlcek, 1969: The annual temperature variation in the lower tropical stratosphere. J. Atmos. Sci., 26, 163167, doi:10.1175/1520-0469(1969)026<0163:TATVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 51735191, doi:10.1029/94JD03122.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., B. N. Duncan, R. Douglass, J. Waters, N. Livesey, W. Read, and M. Filipiak, 2006: The carbon monoxide tape recorder. Geophys. Res. Lett., 33, L12811, doi:10.1029/2006GL026178.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., D. W. Waugh, L. Wang, L. D. Oman, A. R. Douglass, and P. A. Newman, 2014: Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics. J. Geophys. Res. Atmos., 119, 61966206, doi:10.1002/2013JD021294.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2009: Wave driving in the tropical lower stratosphere as simulated by WACCM. Part I: Annual cycle. J. Atmos. Sci., 66, 20292043, doi:10.1175/2009JAS2854.1.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707722, doi:10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., E. P. Gerber, J. M. Wallace, and D. M. W. Frierson, 2013: The role of high-latitude waves in the intraseasonal to seasonal variability of tropical upwelling in the Brewer–Dobson circulation. J. Atmos. Sci., 70, 16311648, doi:10.1175/JAS-D-12-0174.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., Q. Fu, and Y. Hu, 2010: Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res., 115, D00H12, doi:10.1029/2009JD012393.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., J. Holton, and J. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169169, doi:10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1305 1026 330
PDF Downloads 242 44 7