Meteorological and Aerosol Effects on Marine Stratocumulus

Zhe Li Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Zhe Li in
Current site
Google Scholar
PubMed
Close
,
Huiwen Xue Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Huiwen Xue in
Current site
Google Scholar
PubMed
Close
,
Jen-Ping Chen Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Jen-Ping Chen in
Current site
Google Scholar
PubMed
Close
, and
Wei-Chyung Wang Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Wei-Chyung Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the effects of meteorological conditions and aerosols on marine stratocumulus in the southeastern Pacific using the Weather Research and Forecasting (WRF) Model. Two regimes with different temperature and moisture conditions in the finest model domain are investigated. The western regime is around 87°–79°W, while the eastern regime is around 79°–71°W. In both regimes, cloud fraction, liquid water path (LWP), cloud thickness, and precipitation show significant diurnal cycles. Cloud fraction can be 0.83 during the night and down to 0.29 during the day in the western regime. The diurnal cycles in the eastern regime have smaller amplitudes but are still very strong. Stratocumulus properties also differ in the two regimes. Compared to the western regime, the eastern regime has lower temperature, higher relative humidity, and a more coupled boundary layer, leading to higher cloud fraction (by 0.11) and lower cloud-base height. The eastern regime also has lower inversion height that causes lower cloud-top height and thinner clouds and, hence, lower LWP and less precipitation.

Cloud microphysical properties are very sensitive to aerosols in both regimes. Increasing aerosols greatly increase cloud number concentration, decrease cloud effective radius, and suppress precipitation. Cloud macrophysical properties (cloud fraction, LWP) are not sensitive to aerosols in either regime, most notably in the eastern regime where precipitation amount is less. The changes in cloud fraction and LWP caused by changes in aerosol concentrations are smaller than the changes in the diurnal cycle and the spatial variability between the two regimes.

Publisher’s Note: This article was revised on 28 April 2016 to correct the affiliation of the first two authors.

Current affiliation: Numerical Weather Prediction Center, China Meteorological Administration, Beijing, China.

Corresponding author address: Huiwen Xue, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, North Physics Bldg., Rm. 518, 209 Chengfu Road, Beijing 100871, China. E-mail: hxue@pku.edu.cn

Abstract

This study investigates the effects of meteorological conditions and aerosols on marine stratocumulus in the southeastern Pacific using the Weather Research and Forecasting (WRF) Model. Two regimes with different temperature and moisture conditions in the finest model domain are investigated. The western regime is around 87°–79°W, while the eastern regime is around 79°–71°W. In both regimes, cloud fraction, liquid water path (LWP), cloud thickness, and precipitation show significant diurnal cycles. Cloud fraction can be 0.83 during the night and down to 0.29 during the day in the western regime. The diurnal cycles in the eastern regime have smaller amplitudes but are still very strong. Stratocumulus properties also differ in the two regimes. Compared to the western regime, the eastern regime has lower temperature, higher relative humidity, and a more coupled boundary layer, leading to higher cloud fraction (by 0.11) and lower cloud-base height. The eastern regime also has lower inversion height that causes lower cloud-top height and thinner clouds and, hence, lower LWP and less precipitation.

Cloud microphysical properties are very sensitive to aerosols in both regimes. Increasing aerosols greatly increase cloud number concentration, decrease cloud effective radius, and suppress precipitation. Cloud macrophysical properties (cloud fraction, LWP) are not sensitive to aerosols in either regime, most notably in the eastern regime where precipitation amount is less. The changes in cloud fraction and LWP caused by changes in aerosol concentrations are smaller than the changes in the diurnal cycle and the spatial variability between the two regimes.

Publisher’s Note: This article was revised on 28 April 2016 to correct the affiliation of the first two authors.

Current affiliation: Numerical Weather Prediction Center, China Meteorological Administration, Beijing, China.

Corresponding author address: Huiwen Xue, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, North Physics Bldg., Rm. 518, 209 Chengfu Road, Beijing 100871, China. E-mail: hxue@pku.edu.cn
Save
  • Abel, S. J., D. N. Walters, and G. Allen, 2010: Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx. Atmos. Chem. Phys., 10, 10 54110 559, doi:10.5194/acp-10-10541-2010.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, doi:10.1038/nature03174.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, doi:10.1175/2008MWR2582.1.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Allen, G., and Coauthors, 2011: South East Pacific atmospheric composition and variability sampled along 20°S during VOCALS-REx. Atmos. Chem. Phys., 11, 52375262, doi:10.5194/acp-11-5237-2011.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, A. Gadian, and R. Burton, 2012: Limited-area modelling of stratocumulus over South-Eastern Pacific. Atmos. Chem. Phys., 12, 35113526, doi:10.5194/acp-12-3511-2012.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., A. Gadian, and A. Blyth, 2014: Numerical simulations of stratocumulus cloud response to aerosol perturbation. Atmos. Res., 140–141, 7684, doi:10.1016/j.atmosres.2014.01.006.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., and S. J. Abel, 2012: Microphysical controls on the stratocumulus topped boundary-layer structure during VOCALS-REx. Atmos. Chem. Phys., 12, 28492863, doi:10.5194/acp-12-2849-2012.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and D. L. Hartmann, 2009: Large-scale controls on cloudiness. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 217–234.

  • Bretherton, C. S., and Coauthors, 2004: The Epic 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977, doi:10.1175/BAMS-85-7-967.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., R. Wood, R. C. George, D. Leon, G. Allen, and X. Zheng, 2010: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20°S during VOCALS-REx. Atmos. Chem. Phys., 10, 10 63910 654, doi:10.5194/acp-10-10639-2010.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., S. P. de Szoeke, P. Zuidema, and X. Zeng, 2010: A comparison of ship and satellite measurements of cloud properties with global climate model simulations in the southeast Pacific stratus deck. Atmos. Chem. Phys., 10, 65276536, doi:10.5194/acp-10-6527-2010.

    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., and S. E. Yuter, 2015: Patterns of diurnal marine stratocumulus cloud fraction variability. J. Appl. Meteor. Climatol., 54, 847866, doi:10.1175/JAMC-D-14-0178.1.

    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., S. P. de Szoeke, S. E. Yuter, M. Wilbanks, and W. A. Brewer, 2013: Ship-based observations of the diurnal cycle of southeast Pacific marine stratocumulus clouds and precipitation. J. Atmos. Sci., 70, 38763894, doi:10.1175/JAS-D-13-01.1.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., and C. S. Bretherton, 2009: Large eddy simulation of the diurnal cycle in southeastern Pacific stratocumulus. J. Atmos. Sci., 66, 432449, doi:10.1175/2008JAS2785.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J. P., and S. T. Liu, 2004: Physically based two-moment bulkwater parametrization for warm-cloud microphysics. Quart. J. Roy. Meteor. Soc., 130, 5178, doi:10.1256/qj.03.41.

    • Search Google Scholar
    • Export Citation
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2007: A modelling study of aerosol impacts on cloud microphysics and radiative properties. Quart. J. Roy. Meteor. Soc., 133, 283297, doi:10.1002/qj.25.

    • Search Google Scholar
    • Export Citation
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmos. Res., 96, 461476, doi:10.1016/j.atmosres.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • George, R. C., and R. Wood, 2010: Subseasonal variability of low cloud radiative properties over the southeastern Pacific Ocean. Atmos. Chem. Phys., 10, 40474063, doi:10.5194/acp-10-4047-2010.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. Numeric Data Package NDP-026E, ORNL/CDIAC-153, 71 pp. [Available online at http://www.atmos.washington.edu/~sgw/PAPERS/2007_ndp026e.pdf.]

  • Hartmann, D. L., M. E. Ockertbell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jaenicke, R., 1993: Tropospheric aerosols. Aerosol–Cloud–Climate Interactions, P. V. Hobbs, Ed., Academic Press, 1–31.

  • Jones, C. R., C. S. Bretherton, and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-REx. Atmos. Chem. Phys., 11, 71437153, doi:10.5194/acp-11-7143-2011.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., 1997: Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J. Climate, 10, 20182039, doi:10.1175/1520-0442(1997)010<2018:SVOLCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leon, D. C., Z. Wang, and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113, D00A14, doi:10.1029/2008JD009835.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and G. Lesins, 2002: Stronger constraints on the anthropogenic indirect aerosol effect. Science, 298, 10121015, doi:10.1126/science.1075405.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., S. E. Yuter, and S. P. de Szoeke, 2012: Thermodynamic and aerosol controls in southeast Pacific stratocumulus. J. Atmos. Sci., 69, 12501266, doi:10.1175/JAS-D-11-0165.1.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 2014: Ocean–cloud–atmosphere–land interactions in the southeastern Pacific: The VOCALS program. Bull. Amer. Meteor. Soc., 95, 357375, doi:10.1175/BAMS-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., D. L. Williamson, C. Hannay, and J. G. Olson, 2012: Southeast Pacific stratocumulus in the Community Atmosphere Model. J. Climate, 25, 61756192, doi:10.1175/JCLI-D-11-00503.1.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., and P. Zuidema, 2010: Microphysical variability in southeast Pacific Stratocumulus clouds: Synoptic conditions and radiative response. Atmos. Chem. Phys., 10, 62556269, doi:10.5194/acp-10-6255-2010.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, and L. O’Neill, 2013: The diurnal cycle of cloud-top height and cloud cover over the southeastern Pacific as observed by GOES-10. J. Atmos. Sci., 70, 23932408, doi:10.1175/JAS-D-12-0325.1.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., K. M. Xu, A. N. Cheng, P. Minnis, and R. Palikonda, 2015: Mean structure and diurnal cycle of southeast Atlantic boundary layer clouds: Insights from satellite observations and multiscale modeling framework simulations. J. Climate, 28, 324341, doi:10.1175/JCLI-D-14-00368.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, doi:10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951809, doi:10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., and B. Stevens, 2011: On the factors modulating the stratocumulus to cumulus transitions. J. Atmos. Sci., 68, 18651881, doi:10.1175/2011JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., 1976: Experiments with Lilly’s cloud-topped mixed layer model. J. Atmos. Sci., 33, 436446, doi:10.1175/1520-0469(1976)033<0436:EWLCTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. J. Greenwald, 1991: The Earth’s radiation budget and its relation to atmospheric hydrology: 2. Observations of cloud effects. J. Geophys. Res., 96, 15 32515 340, doi:10.1029/91JD00972.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C. H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, doi:10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, F., A. Hall, and X. Qu, 2011: On the relationship between low cloud variability and lower tropospheric stability in the southeast Pacific. Atmos. Chem. Phys., 11, 90539065, doi:10.5194/acp-11-9053-2011.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2013: Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeastern Pacific Ocean. Atmos. Chem. Phys., 13, 25412562, doi:10.5194/acp-13-2541-2013.

    • Search Google Scholar
    • Export Citation
  • Wang, H., G. Feingold, R. Wood, and J. Kazil, 2010: Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in southeastern Pacific stratocumulus. Atmos. Chem. Phys., 10, 63476362, doi:10.5194/acp-10-6347-2010.

    • Search Google Scholar
    • Export Citation
  • Wang, S., L. W. O’Neill, Q. Jiang, S. P. de Szoeke, X. Hong, H. Jin, W. T. Thompson, and X. Zheng, 2011: A regional real-time forecast of marine boundary layers during VOCALS-REx. Atmos. Chem. Phys., 11, 421437, doi:10.5194/acp-11-421-2011.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1986: Global distribution of total cloud cover and cloud types over land. NCAR Tech. Note NCAR/TN-273+STR, 29 pp., doi:10.5065/D6GH9FXB.

  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud types over ocean. NCAR Tech. Note NCAR/TN-317+STR, 42 pp. [Available online at http://www.atmos.washington.edu/CloudMap/Atlases/DistOcean.pdf.]

  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669, doi:10.1175/JAS3942.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17, 35763588, doi:10.1175/1520-0442(2004)017<3576:BLDEAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2010: The PreVOCA experiment: Modeling the lower troposphere in the southeast Pacific. Atmos. Chem. Phys., 10, 47574774, doi:10.5194/acp-10-4757-2010.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., and Coauthors, 2012: Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the southeast Pacific: A regional modelling study using WRF-Chem. Atmos. Chem. Phys., 12, 87778796, doi:10.5194/acp-12-8777-2012.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Stevens, B. Medeiros, and M. Ghil, 2009: Low-cloud fraction, lower-tropospheric stability, and large-scale divergence. J. Climate, 22, 48274844, doi:10.1175/2009JCLI2891.1.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110, D20206, doi:10.1029/2005JD005833.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., D. Painemal, S. de Szoeke, and C. Fairall, 2009: Stratocumulus cloud-top height estimates and their climatic implications. J. Climate, 22, 46524666, doi:10.1175/2009JCLI2708.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1755 1538 521
PDF Downloads 186 49 6