New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean

Mikhail D. Alexandrov Department of Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Mikhail D. Alexandrov in
Current site
Google Scholar
PubMed
Close
,
Igor V. Geogdzhayev Department of Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Igor V. Geogdzhayev in
Current site
Google Scholar
PubMed
Close
,
Kostas Tsigaridis Center for Climate Systems Research, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Kostas Tsigaridis in
Current site
Google Scholar
PubMed
Close
,
Alexander Marshak NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Alexander Marshak in
Current site
Google Scholar
PubMed
Close
,
Robert Levy NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert Levy in
Current site
Google Scholar
PubMed
Close
, and
Brian Cairns NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Brian Cairns in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach, AOT fields have lognormal PDFs and structure functions with the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a 1-yr-long global MODIS AOT dataset (over ocean) with 10-km resolution. It was used to compute AOT statistics for sample cells forming a grid with 5° spacing. The observed shapes of the structure functions indicated that, in a large number of cases, the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0130.s1.

Corresponding author address: Mikhail D. Alexandrov, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: mda14@columbia.edu

Abstract

A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach, AOT fields have lognormal PDFs and structure functions with the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a 1-yr-long global MODIS AOT dataset (over ocean) with 10-km resolution. It was used to compute AOT statistics for sample cells forming a grid with 5° spacing. The observed shapes of the structure functions indicated that, in a large number of cases, the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0130.s1.

Corresponding author address: Mikhail D. Alexandrov, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: mda14@columbia.edu

Supplementary Materials

    • Supplemental Materials (RAR 5.62 MB)
Save
  • Alexandrov, M. D., A. Marshak, B. Cairns, A. A. Lacis, and B. E. Carlson, 2004: Scaling properties of aerosol optical thickness retrieved from ground-based measurements. J. Atmos. Sci., 61, 10241039, doi:10.1175/1520-0469(2004)061<1024:SPOAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, 2003: Mesoscale variations of tropospheric aerosols. J. Atmos. Sci., 60, 119136, doi:10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., 1987: A space–time stochastic model of rainfall for satellite remote-sensing studies. J. Geophys. Res., 92, 96319643, doi:10.1029/JD092iD08p09631.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res., 114, D13205, doi:10.1029/2008JD011115.

  • Cahalan, R. F., and J. B. Snider, 1989: Marine stratocumulus structure. Remote Sens. Environ., 28, 95107, doi:10.1016/0034-4257(89)90108-9.

    • Search Google Scholar
    • Export Citation
  • Curran, P. J., 1988: The semivariogram in remote sensing: An introduction. Remote Sens. Environ., 24, 493507, doi:10.1016/0034-4257(88)90021-1.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1994: Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated. J. Geophys. Res., 99, 80558072, doi:10.1029/94JD00219.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53, 15381558, doi:10.1175/1520-0469(1996)053<1538:SIOLWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, R. Cahalan, and W. Wiscombe, 1997: The Landsat scale break in stratocumulus as a three-dimensional radiative transfer effect, implications for cloud remote sensing. J. Atmos. Sci., 54, 241260, doi:10.1175/1520-0469(1997)054<0241:TLSBIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, H. Gerber, and W. Wiscombe, 1999: Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales. J. Geophys. Res., 104, 61236144, doi:10.1029/1998JD200078.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., and G. D. Nastrom, 1986: Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43, 729740, doi:10.1175/1520-0469(1986)043<0729:TIOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geogdzhayev, I., B. Cairns, M. Mishchenko, K. Tsigaridis, and T. van Noije, 2014: Model-based estimation of sampling-caused uncertainty in aerosol remote sensing for climate research applications. Quart. J. Roy. Meteor. Soc., 140, 23532363, doi:10.1002/qj.2305.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, A. Lacis, and V. Oinas, 2000: Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA, 97, 9875–9880, doi:10.1073/pnas.170278997.

    • Search Google Scholar
    • Export Citation
  • Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, doi:10.5194/acp-11-7781-2011.

    • Search Google Scholar
    • Export Citation
  • Kinne, S., and Coauthors, 2006: An AeroCom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 18151834, doi:10.5194/acp-6-1815-2006.

    • Search Google Scholar
    • Export Citation
  • Koch, D., T. C. Bond, D. Streets, N. Unger, and G. R. van der Werf, 2007: Global impacts of aerosols from particular source regions and sectors. J. Geophys. Res., 112, D02205, doi:10.1029/2005JD007024.

  • Kolmogorov, A. N., 1941: Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 299303.

    • Search Google Scholar
    • Export Citation
  • Levy, R. C., L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. F. Eck, 2010: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys., 10, 10 39910 420, doi:10.5194/acp-10-10399-2010.

    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1989: Two-dimensional turbulence generated by energy sources at two scales. J. Atmos. Sci., 46, 20262030, doi:10.1175/1520-0469(1989)046<2026:TDTGBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and D. Schertzer, 2010: Towards a new synthesis for atmospheric dynamics: Space–time cascades. Atmos. Res., 96, 152, doi:10.1016/j.atmosres.2010.01.004.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and D. Schertzer, 2012: Haar wavelets, fluctuations and structure functions: Convenient choices for geophysics. Nonlinear Processes Geophys., 19, 513527, doi:10.5194/npg-19-513-2012.

    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B. B., 1982: The Fractal Geometry of Nature. W. H. Freeman, 460 pp.

  • Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan, 1997: Scale invariance of liquid water distributions in marine stratocumulus. Part II: Multifractal properties and intermittency issues. J. Atmos. Sci., 54, 14231444, doi:10.1175/1520-0469(1997)054<1423:SIILWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mejia, J. M., and I. Rodriguez-Iturbe, 1974: Correlation links between normal and log normal processes. Water Resour. Res., 10, 689690, doi:10.1029/WR010i004p00689.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling. J. Geophys. Res., 114, D06206, doi:10.1029/2008JD011235.

  • Myhre, G., and Coauthors, 2013: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13, 18531877, doi:10.5194/acp-13-1853-2013.

    • Search Google Scholar
    • Export Citation
  • O’Neill, N. T., A. Ignatov, B. N. Holben, and T. F. Eck, 2000: The lognormal distribution as a reference for reporting aerosol optical depth statistics; Empirical tests using multi-year, multi-site AERONET Sunphotometer data. Geophys. Res. Lett., 27, 33333336, doi:10.1029/2000GL011581.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., and Coauthors, 2009: Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 86978717, doi:10.5194/acp-9-8697-2009.

    • Search Google Scholar
    • Export Citation
  • Redemann, J., M. A. Vaughan, Q. Zhang, Y. Shinozuka, P. B. Russell, J. M. Livingston, M. Kacenelenbogen, and L. A. Remer, 2012: The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth. Atmos. Chem. Phys., 12, 30253043, doi:10.5194/acp-12-3025-2012.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973, doi:10.1175/JAS3385.1.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2008: Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res., 113, D14S07, doi:10.1029/2007JD009661.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, doi:10.1002/2013MS000265.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, and T. Nakajima, 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res., 105, 17 85317 873, doi:10.1029/2000JD900265.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport–radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

  • Unger, N., D. T. Shindell, D. M. Koch, and D. G. Streets, 2008: Air pollution radiative forcing from specific emissions sectors at 2030. J. Geophys. Res., 113, D02306, doi:10.1029/2007JD008683.

  • Winker, D. M., M. A. Vaughan, A. H. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
  • Yao, M.-S., and Y. Cheng, 2012: Cloud simulations in response to turbulence parameterizations in the GISS model E GCM. J. Climate, 25, 49634974, doi:10.1175/JCLI-D-11-00399.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 338 171 13
PDF Downloads 201 51 9