Effects of Saharan Dust on the Linear Dynamics of African Easterly Waves

Dustin F. P. Grogan Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Dustin F. P. Grogan in
Current site
Google Scholar
PubMed
Close
,
Terrence R. Nathan Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Terrence R. Nathan in
Current site
Google Scholar
PubMed
Close
, and
Shu-Hua Chen Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Shu-Hua Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The direct radiative effects of Saharan mineral dust aerosols on the linear dynamics of African easterly waves (AEWs) are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the dust-modified generation of eddy available potential energy . The dust-modified is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression for predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis uses the Weather Research and Forecasting (WRF) Model coupled to an online dust model to calculate the linear dynamics of AEWs. Zonally averaged basic states for wind, temperature, and dust are chosen consistent with summertime conditions over North Africa. For the fastest-growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from τ = 1.0 to τ = 2.5. A local energetics analysis shows that for τ = 1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation and conversions of energy are collocated and occur where the meridional dust gradient is maximized near the critical surface—that is, where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis.

Corresponding author address: Dustin Grogan, Atmospheric Science Program, Department of Land, Air, and Water Resources, One Shields Avenue, University of California, Davis, CA 95616-8627. E-mail: dfgrogan@ucdavis.edu

Abstract

The direct radiative effects of Saharan mineral dust aerosols on the linear dynamics of African easterly waves (AEWs) are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the dust-modified generation of eddy available potential energy . The dust-modified is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression for predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis uses the Weather Research and Forecasting (WRF) Model coupled to an online dust model to calculate the linear dynamics of AEWs. Zonally averaged basic states for wind, temperature, and dust are chosen consistent with summertime conditions over North Africa. For the fastest-growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from τ = 1.0 to τ = 2.5. A local energetics analysis shows that for τ = 1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation and conversions of energy are collocated and occur where the meridional dust gradient is maximized near the critical surface—that is, where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis.

Corresponding author address: Dustin Grogan, Atmospheric Science Program, Department of Land, Air, and Water Resources, One Shields Avenue, University of California, Davis, CA 95616-8627. E-mail: dfgrogan@ucdavis.edu
Save
  • Berry, G. J., and C. D. Thorncroft, 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 12671283, doi:10.1175/JAS-D-11-099.1.

    • Search Google Scholar
    • Export Citation
  • Bretl, S., P. Reutter, C. C. Raible, S. Ferrachat, C. S. Poberaj, L. E. Revell, and U. Lohmann, 2015: The influence of absorbed solar radiation by Saharan dust on hurricane genesis. J. Geophys. Res. Atmos., 120, 19021917, doi:10.1002/2014JD022441.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1975: Some features of synoptic-scale wave based on a compositing analysis of GATE data. Mon. Wea. Rev., 103, 921925, doi:10.1175/1520-0493(1975)103<0921:SFOSWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Some remarks on African disturbances and their progress over the tropical Atlantic. Mon. Wea. Rev., 97, 716726, doi:10.1175/1520-0493(1969)097<0716:SROADA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and C. B. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193213, doi:10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Y.-C. Liu, 2014: The relation between dry vortex merger and tropical cyclone genesis over the Atlantic Ocean. J. Geophys. Res. Atmos., 119, 11 64111 661, doi:10.1002/2014JD021749.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., S.-H. Wang, and M. Waylonis, 2010: Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects. J. Geophys. Res., 115, D21202, doi:10.1029/2010JD014158.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., Y.-C. Liu, T. R. Nathan, C. Davis, R. Torn, N. Sowa, C.-T. Cheng, and J.-P. Chen, 2015: Modeling the effects of dust-radiative forcing on the movement of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 141, 25632570, doi:10.1002/qj.2542.

    • Search Google Scholar
    • Export Citation
  • Cho, H.-R., and M. A. Jenkins, 1987: The thermal structure of tropical easterly waves. J. Atmos. Sci., 44, 25312539, doi:10.1175/1520-0469(1987)044<2531:TTSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., T. R. Nathan, and R. S. Echols, 1998: An analytical study of ozone feedbacks on Kelvin and Rossby–gravity waves: Effects on the QBO. J. Atmos. Sci., 55, 10511062, doi:10.1175/1520-0469(1998)055<1051:AASOOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., and R. Washington, 2007: Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res., 112, D03103, doi:10.1029/2006JD007195.

    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314, doi:10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., 1989a: Unstable radiative-dynamical interactions. Part I: Basic theory. J. Atmos. Sci., 46, 25282543, doi:10.1175/1520-0469(1989)046<2528:URIPIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., 1989b: Unstable radiative-dynamical interactions. Part II: Expanded theory. J. Atmos. Sci., 46, 25442561, doi:10.1175/1520-0469(1989)046<2544:URDIPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grogan, D. F., T. R. Nathan, R. E. Echols, and E. C. Cordero, 2012: A parameterization for the effects of ozone on the wave driving exerted by equatorial waves in the stratosphere. J. Atmos. Sci., 69, 37153731, doi:10.1175/JAS-D-11-0343.1.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245, doi:10.1175/JAS3742.1.

    • Search Google Scholar
    • Export Citation
  • Hankes, I., Z. Wang, G. Zhang, and C. Fritz, 2015: Merger of African easterly waves and formation of Cape Verde storms. Quart. J. Roy. Meteor. Soc., 141, 13061319, doi:10.1002/qj.2439.

    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Shult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, doi:10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hosseinpour, F., and E. M. Wilcox, 2014: Aerosol interactions with African/Atlantic climate dynamics. Environ. Res. Lett., 9, 075004, doi:10.1088/1748-9326/9/7/075004.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133, 13111327, doi:10.1175/MWR2916.1.

    • Search Google Scholar
    • Export Citation
  • Ismail, S., and Coauthors, 2010: LASE measurements of water vapor, aerosol, and cloud distributions in Saharan air layers and tropical disturbances. J. Atmos. Sci., 67, 10261047, doi:10.1175/2009JAS3136.1.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., and A. Pratt, 2008: Saharan dust, lightning and tropical cyclones in the eastern tropical Atlantic during NAMMA-06. Geophys. Res. Lett., 35, L12804, doi:10.1029/2008GL033979.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., A. Pratt, and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA-06. Geophys. Res. Lett., 35, L08815, doi:10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2003: The role of easterly waves on African desert dust transport. J. Climate, 16, 36173628, doi:10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2004: Observational evidence of African desert dust intensification of easterly waves. Geophys. Res. Lett., 31, L17208, doi:10.1029/2004GL020107.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and M. J. Santiago, 2010: Composite analysis of dust impacts on African easterly waves in the Moderate Resolution Imaging Spectrometer era. Geophys. Res. Lett., 115, D16213, doi:10.1029/2009JD013612.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 31023136, doi:10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and H. F. Pierce, 2002: Synoptic-scale influence of the Saharan air layer on tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 130, 31003128, doi:10.1175/1520-0493(2002)130<3100:SSIOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and Coauthors, 1999: Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull. Amer. Meteor. Soc., 80, 10451075, doi:10.1175/1520-0477(1999080<1045:VOTSDP>2.0.CO);2.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., I. Koren, L. A. Remer, D. Tanré, P. Ginoux, and S. Fan, 2005: Dust transport and deposition observed from Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res., 110, D10S12, doi:10.1029/2003JD004436.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2010: The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. Geophys. Res. Lett., 115, D12117, doi:10.1029/2009JD012819.

    • Search Google Scholar
    • Export Citation
  • Kocha, C., J.-P. Lafore, P. Tulet, and Y. Seity, 2012: High-resolution simulation of major West African dust-storm: Comparison with observations and investigation of dust impact. Quart. J. Roy. Meteor. Soc., 138, 455470, doi:10.1002/qj.927.

    • Search Google Scholar
    • Export Citation
  • Konare, A., A. S. Zakey, F. Solmon, F. Giorgi, S. Rauscher, S. Ibrah, and X. Bi, 2008: A regional climate modeling study of the effect of desert dust on the West African monsoon. J. Geophys. Res., 113, D12206, doi:10.1029/2007JD009322.

    • Search Google Scholar
    • Export Citation
  • Kwon, H. J., 1989: A reexamination of genesis of African waves. J. Atmos. Sci., 46, 36213631, doi:10.1175/1520-0469(1989)046<3621:AROTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, doi:10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., J.-P. Chadboureau, and C. Flamant, 2011: Dust impact on the West African heat low in summertime. Quart. J. Roy. Meteor. Soc., 137, 12271240, doi:10.1002/qj.844.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., and N. M. J. Hall, 2009: On the relationship between African easterly waves and the African easterly jet. J. Atmos. Sci., 66, 23032316, doi:10.1175/2009JAS2988.1.

    • Search Google Scholar
    • Export Citation
  • Ma, P.-L., K. Zhang, J. J. Shi, T. Matsui, and A. Arking, 2012: Direct radiative effect of mineral dust on the development of African easterly waves. J. Appl. Meteor. Climatol., 51, 20902104, doi:10.1175/JAMC-D-11-0215.1.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, doi:10.1175/JCLI3920.1.

    • Search Google Scholar
    • Export Citation
  • Moulin, C., and I. Chiapello, 2004: Evidence of the control of summer atmospheric transport of African dust over the Atlantic by Sahel source from TOMS satellites (1979–2000). J. Geophys. Res., 31, L02107, doi:10.1029/2003GL018931.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., 1989: On the role of ozone in the stability of Rossby normal modes. J. Atmos. Sci., 46, 20942100, doi:10.1175/1520-0469(1989)046<2094:OTROOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., and L. Li, 1991: Linear stability of free planetary waves in the presence of radiative–photochemical feedbacks. J. Atmos. Sci., 48, 18371855, doi:10.1175/1520-0469(1991)048<1837:LSOFPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., and E. C. Cordero, 2007: An ozone-modified refractive index for vertically propagating planetary waves. J. Geophys. Res., 112, D02105, doi:10.1029/2006JD007357.

    • Search Google Scholar
    • Export Citation
  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334342, doi:10.1175/1520-0493(1977)105<0334:TEOAWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paradis, D., J.-P. Lafore, J.-L. Redelsperger, and V. Balaji, 1995: African easterly waves and convection. Part I: Linear simulations. J. Atmos. Sci., 52, 16571679, doi:10.1175/1520-0469(1995)052<1657:AEWACP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., 1999: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA, 96, 33963403, doi:10.1073/pnas.96.7.3396.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1972: Vertical and areal distributions of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77, 52555265, doi:10.1029/JC077i027p05255.

    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., and C. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, doi:10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reale, O., W. K. Lau, K.-M. Kim, and E. Brin, 2009: Atlantic tropical cyclogenetic processes during SOP-3 NAMMA in the GEOS-5 global data assimilation and forecast system. J. Atmos. Sci., 66, 35633578, doi:10.1175/2009JAS3123.1.

    • Search Google Scholar
    • Export Citation
  • Reale, O., K. M. Lau, and A. D. Silva, 2011: Impact of an interactive aerosol on the African easterly jet in the NASA GOES-5 global forecasting system. Wea. Forecasting, 26, 504519, doi:10.1175/WAF-D-10-05025.1.

    • Search Google Scholar
    • Export Citation
  • Rennick, M. A., 1976: The generation of African waves. J. Atmos. Sci., 33, 19551969, doi:10.1175/1520-0469(1976)033<1955:TGOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ross, R. S., and T. N. Krishnamurti, 2007: Low-level African easterly wave activity and its relation to Atlantic tropical cyclogenesis in 2001. Mon. Wea. Rev., 135, 39503964, doi:10.1175/2007MWR1996.1.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994: An idealized study of African easterly waves. I: Linear theory. Quart. J. Roy. Meteor. Soc., 120, 953982, doi:10.1002/qj.49712051809.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., N. M. J. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607, doi:10.1175/2008JAS2575.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., C. Cardinali, J.-J. Morcette, and M. Rodwell, 2005: Influence of aerosol climatology on forecasts of the African easterly jet. Geophys. Res. Lett., 32, L10801, doi:10.1029/2004GL022189.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 1995: An inverse balance equation in sigma coordinates for model initialization. Mon. Wea. Rev., 123, 482488, doi:10.1175/1520-0493(1995)123<0482:AIBEIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., K. M. Lau, and K.-M. Kim, 2010: A northward shift of the North Atlantic Ocean intertropical convergences zone in response to summertime Saharan dust outbreaks. Geophys. Res. Lett., 37, L04804, doi:10.1029/2009GL041774.

    • Search Google Scholar
    • Export Citation
  • Zhu, A., V. Ramanathan, F. Li, and D. Kim, 2007: Dust plumes over the Pacific, Indian, and Atlantic oceans: Climatology and radiative impact. J. Geophys. Res., 112, D16208, doi:10.1029/2007JD008427.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., and J. R. Holton, 1986: Photochemical damping of inertio–gravity waves. J. Atmos. Sci., 43, 25782584, doi:10.1175/1520-0469(1986)043<2578:PDOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 654 334 100
PDF Downloads 278 51 2