Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations

Bruce Albrecht Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Bruce Albrecht in
Current site
Google Scholar
PubMed
Close
,
Ming Fang Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Ming Fang in
Current site
Google Scholar
PubMed
Close
, and
Virendra Ghate Environmental Science Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Virendra Ghate in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations made at the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site during uniform nonprecipitating stratocumulus cloud conditions for a 14-h period are used to examine cloud-top entrainment processes and parameterizations. The observations from a vertically pointing Doppler cloud radar provide estimates of vertical velocity variance and energy dissipation rate (EDR) terms in the parameterized turbulent kinetic energy (TKE) budget of the entrainment zone. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlated strongly (r = 0.72) with the dissipation rate term in the entrainment zone, with an increased correlation (r = 0.92) when accounting for the nighttime decoupling of the boundary layer. Independent estimates of entrainment rates were obtained from an inversion-height budget using the local time derivative and horizontal advection of cloud-top height together with large-scale vertical velocity at the boundary layer inversion from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis model. The mean entrainment rate from the inversion-height budget during the 14-h period was 0.74 ± 0.15 cm s−1 and was used to calculate bulk coefficients for entrainment parameterizations based on convective velocity scale w* and TKE budgets of the entrainment zone. The hourly values of entrainment rates calculated using these coefficients exhibited good agreement with those calculated from the inversion-height budget associated with substantial changes in surface buoyancy production and cloud-top radiative cooling. The results indicate a strong potential for making entrainment rate estimates directly from radar vertical velocity variance and the EDR measurements.

Corresponding author address: Bruce Albrecht, Dept. of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: balbrecht@rsmas.miami.edu

Abstract

Observations made at the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site during uniform nonprecipitating stratocumulus cloud conditions for a 14-h period are used to examine cloud-top entrainment processes and parameterizations. The observations from a vertically pointing Doppler cloud radar provide estimates of vertical velocity variance and energy dissipation rate (EDR) terms in the parameterized turbulent kinetic energy (TKE) budget of the entrainment zone. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlated strongly (r = 0.72) with the dissipation rate term in the entrainment zone, with an increased correlation (r = 0.92) when accounting for the nighttime decoupling of the boundary layer. Independent estimates of entrainment rates were obtained from an inversion-height budget using the local time derivative and horizontal advection of cloud-top height together with large-scale vertical velocity at the boundary layer inversion from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis model. The mean entrainment rate from the inversion-height budget during the 14-h period was 0.74 ± 0.15 cm s−1 and was used to calculate bulk coefficients for entrainment parameterizations based on convective velocity scale w* and TKE budgets of the entrainment zone. The hourly values of entrainment rates calculated using these coefficients exhibited good agreement with those calculated from the inversion-height budget associated with substantial changes in surface buoyancy production and cloud-top radiative cooling. The results indicate a strong potential for making entrainment rate estimates directly from radar vertical velocity variance and the EDR measurements.

Corresponding author address: Bruce Albrecht, Dept. of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: balbrecht@rsmas.miami.edu
Save
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, doi:10.1029/GL017i001p00089.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91–114, doi:10.1002/2013MS000250.

  • Bretherton, C. S., and Coauthors, 1999: An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391423, doi:10.1002/qj.49712555402.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., J. C. Wyngaard, and D. H. Lenschow, 1982: Marine stratocumulus layers. Part II: Turbulence budgets. J. Atmos. Sci., 39, 818836, doi:10.1175/1520-0469(1982)039<0818:MSLPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci., 62, 32683285, doi:10.1175/JAS3541.1.

    • Search Google Scholar
    • Export Citation
  • Fang, M., B. A. Albrecht, V. P. Ghate, and P. Kollias, 2014a: Turbulence in continental stratocumulus, part I: External forcings and turbulence structures. Bound.-Layer Meteor., 150, 341360, doi:10.1007/s10546-013-9873-3.

    • Search Google Scholar
    • Export Citation
  • Fang, M., B. A. Albrecht, V. P. Ghate, and P. Kollias, 2014b: Turbulence in continental stratocumulus, part II: Eddy dissipation rates and large-eddy coherent structures. Bound.-Layer Meteor., 150, 361380, doi:10.1007/s10546-013-9872-4.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., D. H. Lenschow, C. W. Fairall, W. H. Schubert, and J. S. Gibson, 1995: Doppler radar measurements of turbulence in marine stratiform cloud during ASTEX. J. Atmos. Sci., 52, 28002808, doi:10.1175/1520-0469(1995)052<2800:DRMOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. P. Malinowski, H. Jonsson, D. Khelif, and S. K. Krueger, 2013: Entrainment rates and microphysics in POST stratocumulus. J. Geophys. Res. Atmos., 118, 12 09412 109, doi:10.1002/jgrd.50878.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., B. A. Albrecht, and P. Kollias, 2010: Vertical velocity structure of nonprecipitating continental boundary layer stratocumulus clouds. J. Geophys. Res., 115, D13204, doi:10.1029/2009JD013091.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., B. A. Albrecht, M. A. Miller, A. Brewer, and C. W. Fairall, 2014: Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx. J. Appl. Meteor. Climatol., 53, 117135, doi:10.1175/JAMC-D-12-0225.1.

    • Search Google Scholar
    • Export Citation
  • Haman, K. E., S. P. Malinowski, M. J. Kurowski, H. Gerber, and J. L. Brenguier, 2007: Small scale mixing processes at the top of a marine stratocumulus—A case study. Quart. J. Roy. Meteor. Soc., 133, 213226, doi:10.1002/qj.5.

    • Search Google Scholar
    • Export Citation
  • Kawa, S. R., and R. Pearson Jr., 1989: An observational study of stratocumulus entrainment and thermodynamics. J. Atmos. Sci., 46, 26492661, doi:10.1175/1520-0469(1989)046<2649:AOSOSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and B. Albrecht, 2000: The turbulence structure in a continental stratocumulus cloud from millimeter-wavelength radar observations. J. Atmos. Sci., 57, 24172434, doi:10.1175/1520-0469(2000)057<2417:TTSIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., M. A. Miller, E. P. Luke, K. L. Johnson, E. E. Clothiaux, K. P. Moran, K. B. Widener, and B. A. Albrecht, 2007: The Atmospheric Radiation Measurement Program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic Technol., 24, 11991214, doi:10.1175/JTECH2033.1.

    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., S. P. Malinowski, and W. Grabowski, 2009: A numerical investigation of entrainment and transport within a stratocumulus-topped boundary layer. Quart. J. Roy. Meteor. Soc., 135, 7792, doi:10.1002/qj.354.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, doi:10.1002/qj.49709440106.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., and M. K. MacVean, 1999: The parameterization of entrainment driven by surface heating and cloud-top cooling. Quart. J. Roy. Meteor. Soc., 125, 271299, doi:10.1002/qj.49712555315.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2; Corrigendum, 129, 905905, doi:10.1175/1520-0493(2001)129<0905:C>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, D. Leon, and G. Vali, 2005: Turbulence measurements in marine stratocumulus with airborne Doppler radar. Quart. J. Roy. Meteor. Soc., 131, 20632080, doi:10.1256/qj.04.131.

    • Search Google Scholar
    • Export Citation
  • Malinowski, S. P., and Coauthors, 2013: Physics of Stratocumulus Top (POST): Turbulence mixing across the capping inversion. Atmos. Chem. Phys., 13, 12 17112 186, doi:10.5194/acp-13-12171-2013.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., B. Stevens, and H. Schmidt, 2014: Wind shear and buoyancy reversal at the top of stratocumulus. J. Atmos. Sci., 71, 10401057, doi:10.1175/JAS-D-13-0189.1.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455, doi:10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783820, doi:10.1002/qj.49711046603.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. D. Turton, 1986: An observational study of the structure of stratiform cloud sheets: Part II. Entrainment. Quart. J. Roy. Meteor. Soc., 112, 461480, doi:10.1002/qj.49711247210.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: On entrainment rates in nocturnal marine stratocumulus. Quart. J. Roy. Meteor. Soc., 129, 34693493, doi:10.1256/qj.02.202.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1970: Free convection in the turbulent Ekman layer of the atmosphere. J. Atmos. Sci., 27, 10271034, doi:10.1175/1520-0469(1970)027<1027:FCITTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1973: A model of the dynamics of an inversion above the convective boundary layer. J. Atmos. Sci., 30, 558567, doi:10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and A. G. M. Driedonks, 1981: Basic entrainment equations for the atmospheric boundary layer. Bound.-Layer Meteor., 20, 515531, doi:10.1007/BF00122299.

    • Search Google Scholar
    • Export Citation
  • Wang, S., J.-C. Golaz, and Q. Wang, 2008: Effect of intense wind shear across the inversion on stratocumulus. Geophys. Res. Lett., 35, L15814, doi:10.1029/2008GL033865.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Zeman, O., and H. Tennekes, 1977: Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer. J. Atmos. Sci., 34, 111123, doi:10.1175/1520-0469(1977)034<0111:POTTEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated conservations of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54, 15031524, doi:10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie, 2001: Objective analysis of ARM IOP data: Method and sensitivity. Mon. Wea. Rev., 129, 295311, doi:10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., B. A. Albrecht, V. P. Ghate, and Z.-D. Zhu, 2010: Multiple scale simulations of stratocumulus clouds. J. Geophys. Res., 115, D23201, doi:10.1029/2010JD014400.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1949 1203 263
PDF Downloads 648 136 11