A Multiscale Model for the Intraseasonal Impact of the Diurnal Cycle over the Maritime Continent on the Madden–Julian Oscillation

Andrew J. Majda Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute, New York University, New York, New York

Search for other papers by Andrew J. Majda in
Current site
Google Scholar
PubMed
Close
and
Qiu Yang Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute, New York University, New York, New York

Search for other papers by Qiu Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The eastward-propagating Madden–Julian oscillation (MJO) typically exhibits complex behavior during its passage over the Maritime Continent, sometimes slowly propagating eastward and other times stalling and even terminating there with large amounts of rainfall. This is a huge challenge for present-day numerical models to simulate. One possible reason is the inadequate treatment of the diurnal cycle and its scale interaction with the MJO. Here these two components are incorporated into a simple self-consistent multiscale model that includes one model for the intraseasonal impact of the diurnal cycle and another one for the planetary/intraseasonal circulation. The latter model is forced self-consistently by eddy flux divergences of momentum and temperature from a model for the diurnal cycle with two baroclinic modes, which capture the intraseasonal impact of the diurnal cycle. The MJO is modeled as the planetary-scale circulation response to a moving heat source on the synoptic and planetary scales. The results show that the intraseasonal impact of the diurnal cycle during boreal winter tends to strengthen the westerlies (easterlies) in the lower (upper) troposphere in agreement with the observations. In addition, the temperature anomaly induced by the intraseasonal impact of the diurnal cycle can cancel that from the symmetric–asymmetric MJO with convective momentum transfer, yielding stalled or suppressed propagation of the MJO across the Maritime Continent. The simple multiscale model should be useful for the MJO in observations or more complex numerical models.

Denotes Open Access content.

Corresponding author address: Qiu Yang, Courant Institute, New York University, 251 Mercer Street, New York, NY 10012. E-mail: yangq@cims.nyu.edu

Abstract

The eastward-propagating Madden–Julian oscillation (MJO) typically exhibits complex behavior during its passage over the Maritime Continent, sometimes slowly propagating eastward and other times stalling and even terminating there with large amounts of rainfall. This is a huge challenge for present-day numerical models to simulate. One possible reason is the inadequate treatment of the diurnal cycle and its scale interaction with the MJO. Here these two components are incorporated into a simple self-consistent multiscale model that includes one model for the intraseasonal impact of the diurnal cycle and another one for the planetary/intraseasonal circulation. The latter model is forced self-consistently by eddy flux divergences of momentum and temperature from a model for the diurnal cycle with two baroclinic modes, which capture the intraseasonal impact of the diurnal cycle. The MJO is modeled as the planetary-scale circulation response to a moving heat source on the synoptic and planetary scales. The results show that the intraseasonal impact of the diurnal cycle during boreal winter tends to strengthen the westerlies (easterlies) in the lower (upper) troposphere in agreement with the observations. In addition, the temperature anomaly induced by the intraseasonal impact of the diurnal cycle can cancel that from the symmetric–asymmetric MJO with convective momentum transfer, yielding stalled or suppressed propagation of the MJO across the Maritime Continent. The simple multiscale model should be useful for the MJO in observations or more complex numerical models.

Denotes Open Access content.

Corresponding author address: Qiu Yang, Courant Institute, New York University, 251 Mercer Street, New York, NY 10012. E-mail: yangq@cims.nyu.edu
Save
  • Benedict, J. J., and D. A. Randall, 2011: Impacts of idealized air–sea coupling on Madden–Julian oscillation structure in the superparameterized CAM. J. Atmos. Sci., 68, 19902008, doi:10.1175/JAS-D-11-04.1.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 16941721, doi:10.1175/JAS3455.1.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., and A. J. Majda, 2006: Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden–Julian oscillation. Dyn. Atmos. Oceans, 42, 152215, doi:10.1016/j.dynatmoce.2005.10.005.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze, 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, doi:10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., B. Khouider, and A. J. Majda, 2011a: Simple multicloud models for the diurnal cycle of tropical precipitation. Part I: Formulation and the case of the tropical oceans. J. Atmos. Sci., 68, 21692190, doi:10.1175/2011JAS3568.1.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., B. Khouider, and A. J. Majda, 2011b: Simple multicloud models for the diurnal cycle of tropical precipitation. Part II: The continental regime. J. Atmos. Sci., 68, 21922207, doi:10.1175/2011JAS3600.1.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., A. J. Majda, and B. Khouider, 2013: Simple models for the diurnal cycle and convectively coupled waves. Theor. Comput. Fluid Dyn., 27, 533559, doi:10.1007/s00162-012-0291-9.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, doi:10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and K. Woodberry, 1993: The diurnal cycle of tropical convection. J. Geophys. Res., 98, 16 623–16 637, doi:10.1029/93JD00525.

  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345364, doi:10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., D. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 21362154, doi:10.1175/JAS3453.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006a: Model multi-cloud parameterizations for convectively coupled waves: Detailed nonlinear wave evolution. Dyn. Atmos. Oceans, 42, 5980, doi:10.1016/j.dynatmoce.2005.12.001.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006b: Multicloud convective parametrizations with crude vertical structure. Theor. Comput. Fluid Dyn., 20, 351375, doi:10.1007/s00162-006-0013-2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006c: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2007: A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64, 381400, doi:10.1175/JAS3833.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008a: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 33763397, doi:10.1175/2008JAS2752.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008b: Multicloud models for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65, 895914, doi:10.1175/2007JAS2408.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Larson, K., and D. L. Hartmann, 2003a: Interactions among cloud, water vapor, radiation, and large-scale circulation in the tropical climate. Part I: Sensitivity to uniform sea surface temperature changes. J. Climate, 16, 14251440, doi:10.1175/1520-0442-16.10.1425.

    • Search Google Scholar
    • Export Citation
  • Larson, K., and D. L. Hartmann, 2003b: Interactions among cloud, water vapor, radiation, and large-scale circulation in the tropical climate. Part II: Sensitivity to spatial gradients of sea surface temperature. J. Climate, 16, 14411455, doi:10.1175/1520-0442-16.10.1441.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., D. E. Waliser, M. C. Wheeler, and J. L. McBride, 2012: Australasian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer, 147–197, doi:10.1007/978-3-642-13914-7_5.

  • Lin, J.-L., M. Zhang, and B. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci., 62, 21722188, doi:10.1175/JAS3471.1.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 695715, doi:10.1175/1520-0469(1996)053<0695:KATCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2007: New multiscale models and self-similarity in tropical convection. J. Atmos. Sci., 64, 13931404, doi:10.1175/JAS3880.1.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and R. Klein, 2003: Systematic multiscale models for the tropics. J. Atmos. Sci., 60, 393408, doi:10.1175/1520-0469(2003)060<0393:SMMFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and J. A. Biello, 2004: A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 101, 47364741, doi:10.1073/pnas.0401034101.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, doi:10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, doi:10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, doi:10.1002/qj.2161.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, doi:10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, doi:10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauniyar, S. P., and K. J. Walsh, 2011: Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Climate, 24, 325348, doi:10.1175/2010JCLI3673.1.

    • Search Google Scholar
    • Export Citation
  • Raupp, C. F., and P. L. Silva Dias, 2009: Resonant wave interactions in the presence of a diurnally varying heat source. J. Atmos. Sci., 66, 31653183, doi:10.1175/2009JAS2899.1.

    • Search Google Scholar
    • Export Citation
  • Raupp, C. F., and P. L. Silva Dias, 2010: Interaction of equatorial waves through resonance with the diurnal cycle of tropical heating. Tellus, 62A, 706718, doi:10.1111/j.1600-0870.2010.00463.x.

    • Search Google Scholar
    • Export Citation
  • Ray, C., 1928: Diurnal variation of rainfall at San Juan, P. R. Mon. Wea. Rev., 56, 140141, doi:10.1175/1520-0493(1928)56<140:DVORAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2014: Rayleigh damping in the free troposphere. J. Atmos. Sci., 71, 553565, doi:10.1175/JAS-D-13-062.1.

  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, doi:10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., P. Inness, R. Neale, S. Woolnough, and G. Yang, 2003: Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann. Geophys., 46, 139–155, doi:10.4401/ag-3383.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., J. Slingo, P. Inness, and W.-M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13, 769795, doi:10.1007/s003820050197.

    • Search Google Scholar
    • Export Citation
  • Stratton, R., and A. Stirling, 2012: Improving the diurnal cycle of convection in GCMs. Quart. J. Roy. Meteor. Soc., 138, 11211134, doi:10.1002/qj.991.

    • Search Google Scholar
    • Export Citation
  • Sui, C., and K. Lau, 1992: Multiscale phenomena in the tropical atmosphere over the western Pacific. Mon. Wea. Rev., 120, 407430, doi:10.1175/1520-0493(1992)120<0407:MPITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sui, C., X. Li, K. Lau, and D. Adamec, 1997: Multiscale air–sea interactions during TOGA COARE. Mon. Wea. Rev., 125, 448462, doi:10.1175/1520-0493(1997)125<0448:MASIDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, B., B. J. Soden, and X. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109, D10101, doi:10.1029/2003JD004117.

  • Tian, B., D. E. Waliser, and E. J. Fetzer, 2006: Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophys. Res. Lett., 33, L20704, doi:10.1029/2006GL027752.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., D. Giannakis, and A. J. Majda, 2014: Symmetric and antisymmetric convection signals in the Madden–Julian oscillation. Part I: Basic modes in infrared brightness temperature. J. Atmos. Sci., 71, 33023326, doi:10.1175/JAS-D-13-0122.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., and H.-H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 54335448, doi:10.1175/2009JCLI2825.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W.-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57, 23742396, doi:10.1175/1520-0469(2000)057<2374:TMJOOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., and A. J. Majda, 2014: A multi-scale model for the intraseasonal impact of the diurnal cycle of tropical convection. Theor. Comput. Fluid Dyn., 28, 605633, doi:10.1007/s00162-014-0336-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 793 541 328
PDF Downloads 235 50 1