A Bayesian Examination of Deep Convective Squall-Line Sensitivity to Changes in Cloud Microphysical Parameters

Derek J. Posselt University of Michigan, Ann Arbor, Michigan

Search for other papers by Derek J. Posselt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Deep convective cloud content, precipitation distribution and rate, dynamics, and radiative fluxes are known to be sensitive to the details of liquid- and ice-phase cloud microphysical processes. Previous studies have explored the multivariate convective response to changes in cloud microphysical parameter values in a framework that isolated the cloud and radiation schemes from the thermodynamic and dynamic environment. This study uses a Bayesian Markov chain Monte Carlo (MCMC) algorithm to generate sets of cloud microphysical parameters consistent with a specific storm environment in a three-dimensional cloud-system-resolving model. These parameter sets, and the corresponding large ensemble of model simulations, contain information about the univariate model sensitivity, as well as parameter–state and parameter–parameter interactions. Examination of the relationships between cloud parameters and in-cloud vertical motion and latent heat release provides information about the influence of microphysical processes on the in-cloud environment. Exploration of the joint dependence of microphysical properties and clear-air relative humidity and temperature allows an assessment of the influence of cloud microphysics on the near-cloud environment. Analysis of the MCMC results indicates the model output is sensitive to a small subset of the parameters. In addition, constraint of cloud microphysics using bulk observations of the hydrologic cycle and TOA radiative fluxes uniquely constrains vertical velocity, latent heat release, and the environmental temperature and relative humidity.

Corresponding author address: Derek J. Posselt, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143. E-mail: dposselt@umich.edu

Abstract

Deep convective cloud content, precipitation distribution and rate, dynamics, and radiative fluxes are known to be sensitive to the details of liquid- and ice-phase cloud microphysical processes. Previous studies have explored the multivariate convective response to changes in cloud microphysical parameter values in a framework that isolated the cloud and radiation schemes from the thermodynamic and dynamic environment. This study uses a Bayesian Markov chain Monte Carlo (MCMC) algorithm to generate sets of cloud microphysical parameters consistent with a specific storm environment in a three-dimensional cloud-system-resolving model. These parameter sets, and the corresponding large ensemble of model simulations, contain information about the univariate model sensitivity, as well as parameter–state and parameter–parameter interactions. Examination of the relationships between cloud parameters and in-cloud vertical motion and latent heat release provides information about the influence of microphysical processes on the in-cloud environment. Exploration of the joint dependence of microphysical properties and clear-air relative humidity and temperature allows an assessment of the influence of cloud microphysics on the near-cloud environment. Analysis of the MCMC results indicates the model output is sensitive to a small subset of the parameters. In addition, constraint of cloud microphysics using bulk observations of the hydrologic cycle and TOA radiative fluxes uniquely constrains vertical velocity, latent heat release, and the environmental temperature and relative humidity.

Corresponding author address: Derek J. Posselt, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143. E-mail: dposselt@umich.edu
Save
  • Bryan, G. H., and R. Rotunno, 2008: Gravity currents in a deep anelastic atmosphere. J. Atmos. Sci., 65, 536556, doi:10.1175/2007JAS2443.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wynguard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094, doi:10.1175/MWR3021.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A shortwave radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, Vol. 15, 38 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.]

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-2001-104606, Vol. 19, 55 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Chou137.pdf.]

  • Cifelli, R., W. A. Petersen, L. D. Carey, S. A. Rutledge, and M. A. F. da Silva Dias, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res., 107, 8077, doi:10.1029/2000JD000264.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., and Coauthors, 2008: Bayesian inference and Markov chain Monte Carlo sampling to reconstruct a contaminant source on a continental scale. J. Appl. Meteor. Climatol., 47, 26002613, doi:10.1175/2008JAMC1766.1.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., J. Simpson, and W.-K. Tao, 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev., 124, 21002125, doi:10.1175/1520-0493(1996)124<2100:FRFPEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 31443176, doi:10.1175/1520-0469(1989)046<3144:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2004: Bayesian Data Analysis. 2nd ed. Chapman and Hall/CRC, 696 pp.

  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627, doi:10.1175/MWR2810.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: Impact of cloud microphysics on convective–radiative quasi equilibrium revealed by cloud-resolving convective parameterization. J. Climate, 16, 34633475, doi:10.1175/1520-0442(2003)016<3463:IOCMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1999: Cloud resolving modeling of tropical cloud systems during phase III of GATE. Part III: Effects of cloud microphysics. J. Atmos. Sci., 56, 23842402, doi:10.1175/1520-0469(1999)056<2384:CRMOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haario, H., E. Saksman, and J. Tamminen, 1999: Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Stat., 14, 375395, doi:10.1007/s001800050022.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Smith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, doi:10.1175/JAS3879.1.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, doi:10.1175/JAS-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272285, doi:10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2003: The tropical oceanic energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16, 19671985, doi:10.1175/1520-0442(2003)016<1967:TTOEBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17, 45414563, doi:10.1175/3222.1.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, doi:10.1016/S0169-8095(97)00018-5.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, doi:10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Petch, J. C., and M. E. B. Gray, 2001: Sensitivity studies using a cloud-resolving model simulation of the tropical west Pacific. Quart. J. Roy. Meteor. Soc., 127, 22872306, doi:10.1002/qj.49712757705.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., 2013: Markov chain Monte Carlo methods. Theory and Applications in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Vol. II, Springer, 59–87.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and T. Vukicevic, 2010: Robust characterization of model physics uncertainty for simulations of deep moist convection. Mon. Wea. Rev., 138, 15131535, doi:10.1175/2009MWR3094.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and C. H. Bishop, 2012: Nonlinear parameter estimation: Comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon. Wea. Rev., 140, 19571974, doi:10.1175/MWR-D-11-00242.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and G. G. Mace, 2014: MCMC-based assessment of the error characteristics of a surface-based combined radar–passive microwave cloud property retrieval. J. Appl. Meteor. Climatol., 53, 20342057, doi:10.1175/JAMC-D-13-0237.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., D. Hodyss, and C. H. Bishop, 2014: Errors in ensemble Kalman smoother estimates of cloud microphysical parameters. Mon. Wea. Rev., 142, 16311654, doi:10.1175/MWR-D-13-00290.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., X. Li, S. A. Tushaus, and J. R. Mecikalski, 2015: Assimilation of dual-polarization radar observations in mixed- and ice-phase regions of convective storms: Information content and forward model errors. Mon. Wea. Rev., 143, 26112636, doi:10.1175/MWR-D-14-00347.1.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., R. N. Ferreira, J. B. Halverson, D. L. Herdies, and M. A. F. Silva Dias, 2002: Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J. Geophys. Res., 107, 8040, doi:10.1029/2000JD000263.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roy, S. S., R. K. Datta, R. C. Bhatia, and A. K. Sharma, 2005: Drop-size distributions of tropical rain over south India. Geofizika, 22, 105130.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, doi:10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and W.-K. Tao, 1993: The Goddard Cumulus Ensemble Model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM. Terr. Atmos. Oceanic Sci., 4, 73116.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1983: A simple positive definite advection scheme with small implicit diffusion. Mon. Wea. Rev., 111, 479486, doi:10.1175/1520-0493(1983)111<0479:ASPDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325362, doi:10.1016/0021-9991(84)90121-9.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive advection transport algorithm: Nonoscillatory option. J. Comput. Phys., 86, 355375, doi:10.1016/0021-9991(90)90105-A.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tamminen, J., and E. Kyrölä, 2001: Bayesian solution for nonlinear and non-Gaussian inverse problems by Markov chain Monte Carlo method. J. Geophys. Res., 106, 14 37714 390, doi:10.1029/2001JD900007.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., 2007: Cloud resolving modeling. J. Meteor. Soc. Japan, 85B, 305330, doi:10.2151/jmsj.85B.305.

  • Tao, W.-K., and J. Simpson, 1993: Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Ocean. Sci., 4, 3572.

  • Tao, W.-K., J. R. Scala, B. S. Ferrier, and J. Simpson, 1995: The effect of melting processes on the development of a tropical and a midlatitude squall line. J. Atmos. Sci., 52, 19341948, doi:10.1175/1520-0469(1995)052<1934:TEOMPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation, and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137, doi:10.1007/s00703-001-0594-7.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2014: The Goddard Cumulus Ensemble (GCE) model: Improvements and applications for studying precipitation processes. Atmos. Res., 143, 392242, doi:10.1016/j.atmosres.2014.03.005.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008a: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648, doi:10.1175/2007MWR2070.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008b: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136, 16491688, doi:10.1175/2007MWR2071.1.

    • Search Google Scholar
    • Export Citation
  • Tushaus, S. A., D. J. Posselt, M. M. Miglietta, R. Rotunno, and L. Delle Monache, 2015: Bayesian exploration of multivariate orographic precipitation sensitivity for moist stable and neutral flows. Mon. Wea. Rev., 143, 44594475, doi:10.1175/MWR-D-15-0036.1.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609, doi:10.1175/1520-0469(2004)061<1596:TIOHSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, doi:10.1175/JAS3713.1.

    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2012: Quantification of cloud microphysical parameterization uncertainty using radar reflectivity. Mon. Wea. Rev., 140, 34423466, doi:10.1175/MWR-D-11-00216.1.

    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2014: Linearization of microphysical parameterization uncertainty using multiplicative process perturbation parameters. Mon. Wea. Rev., 142, 401413, doi:10.1175/MWR-D-13-00076.1.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., and D. J. Posselt, 2008: Analysis of the impact of model nonlinearities in inverse problem solving. J. Atmos. Sci., 65, 28032823, doi:10.1175/2008JAS2534.1.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962, doi:10.1016/0169-8095(94)00087-T.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X.-Y. Huang, and T. D. Auligne, 2013: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 22242244, doi:10.1175/MWR-D-12-00168.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences.3rd ed. Academic Press, 704 pp.

  • Wu, X., W. D. Hall, W. W. Grabowski, M. W. Moncrieff, W. D. Collins, and J. T. Kiehl, 1999: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part II: Effects of ice microphysics on cloud–radiation interaction. J. Atmos. Sci., 56, 31773195, doi:10.1175/1520-0469(1999)056<3177:LTBOCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., W.-K. Tao, S. Lang, A. Y. Hou, M. Zhang, and J. Simpson, 2008: On the sensitivity of atmospheric ensembles to cloud microphysics in long-term cloud-resolving model simulations. J. Meteor. Soc. Japan, 86, 4565, doi:10.2151/jmsj.86A.45.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1730 1318 489
PDF Downloads 355 69 4