Cloud Droplet Collisions in Turbulent Environment: Collision Statistics and Parameterization

Sisi Chen McGill University, Montréal, Québec, Canada

Search for other papers by Sisi Chen in
Current site
Google Scholar
PubMed
Close
,
Peter Bartello McGill University, Montréal, Québec, Canada

Search for other papers by Peter Bartello in
Current site
Google Scholar
PubMed
Close
,
M. K. Yau McGill University, Montréal, Québec, Canada

Search for other papers by M. K. Yau in
Current site
Google Scholar
PubMed
Close
,
P. A. Vaillancourt Meteorological Research Division, Environment Canada, Dorval, Québec, Canada

Search for other papers by P. A. Vaillancourt in
Current site
Google Scholar
PubMed
Close
, and
Kevin Zwijsen McGill University, Montréal, Québec, Canada

Search for other papers by Kevin Zwijsen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The purpose of this paper is to quantify the influence of turbulence in collision statistics by separately studying the impacts of computational domain sizes, eddy dissipation rates (EDRs), and droplet sizes and eventually to develop an accurate parameterization of collision kernels. Direct numerical simulations (DNS) were performed with a relatively wide range of EDRs and Taylor microscale Reynolds numbers . EDR measures the turbulence intensity levels. DNS model studies have simulated homogeneous turbulence in a small domain in the cloud’s adiabatic core. Clouds clearly have much larger scales than current DNS can simulate. For this reason, it is emphasized that obtained from current DNS is fundamentally only a measure of the computational domain size for a given EDR and cannot completely describe the physical properties of cloud turbulence. Results show that the collision statistics are independent of the domain sizes and hence of the computational for droplet sizes no bigger than 25 μm as long as the droplet separation distance, which is on the order of the Kolmogorov scale in real clouds, is resolved. Instead, they are found to be highly correlated with EDRs and droplet sizes, and this correlation is used to formulate an improved parameterization scheme. The new scheme well represents the turbulent geometric collision kernel with a relative uncertainty of 14%. A comparison between different parameterizations is made, and the formulas proposed here are shown to improve the fit to the collision statistics.

Corresponding author address: Sisi Chen, Department of Atmospheric and Oceanic Sciences, McGill University, Room 945, Burnside Hall, 805 Sherbrooke Street West, Montréal QC H3A 0B9, Canada. E-mail: sisi.chen@mail.mcgill.ca

Abstract

The purpose of this paper is to quantify the influence of turbulence in collision statistics by separately studying the impacts of computational domain sizes, eddy dissipation rates (EDRs), and droplet sizes and eventually to develop an accurate parameterization of collision kernels. Direct numerical simulations (DNS) were performed with a relatively wide range of EDRs and Taylor microscale Reynolds numbers . EDR measures the turbulence intensity levels. DNS model studies have simulated homogeneous turbulence in a small domain in the cloud’s adiabatic core. Clouds clearly have much larger scales than current DNS can simulate. For this reason, it is emphasized that obtained from current DNS is fundamentally only a measure of the computational domain size for a given EDR and cannot completely describe the physical properties of cloud turbulence. Results show that the collision statistics are independent of the domain sizes and hence of the computational for droplet sizes no bigger than 25 μm as long as the droplet separation distance, which is on the order of the Kolmogorov scale in real clouds, is resolved. Instead, they are found to be highly correlated with EDRs and droplet sizes, and this correlation is used to formulate an improved parameterization scheme. The new scheme well represents the turbulent geometric collision kernel with a relative uncertainty of 14%. A comparison between different parameterizations is made, and the formulas proposed here are shown to improve the fit to the collision statistics.

Corresponding author address: Sisi Chen, Department of Atmospheric and Oceanic Sciences, McGill University, Room 945, Burnside Hall, 805 Sherbrooke Street West, Montréal QC H3A 0B9, Canada. E-mail: sisi.chen@mail.mcgill.ca
Save
  • Allen, M., D. Tildesley, and J. R. Banavar, 1987: Computer Simulation of Liquids. Oxford University Press, 385 pp.

  • Amdahl, G. M., 1967: Validity of the single processor approach to achieving large scale computing capabilities. Proc. AFIPS Spring Joint Computer Conf., Atlantic City, NJ, Association for Computing Machinery, 483–485.

  • Ayala, O., W. W. Grabowski, and L.-P. Wang, 2007: A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles. J. Comput. Phys., 225, 5173, doi:10.1016/j.jcp.2006.11.016.

    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, L.-P. Wang, and W. W. Grabowski, 2008a: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys., 10, 075015, doi:10.1088/1367-2630/10/7/075015.

  • Ayala, O., B. Rosa, and L.-P. Wang, 2008b: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New J. Phys., 10, 075016, doi:10.1088/1367-2630/10/7/075016.

  • Ayala, O., H. Parishani, L. Chen, B. Rosa, and L.-P. Wang, 2014: DNS of hydrodynamically interacting droplets in turbulent clouds: Parallel implementation and scalability analysis using 2D domain decomposition. Comput. Phys. Commun., 185, 32693290, doi:10.1016/j.cpc.2014.09.005.

    • Search Google Scholar
    • Export Citation
  • Benmoshe, N., and P. Khain, 2014: The effects of turbulence on the microphysics of mixed-phase deep convective clouds investigated with a 2-D cloud model with spectral bin microphysics. J. Geophys. Res. Atmos., 119, 207221, doi:10.1002/2013JD020118.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, doi:10.1029/2006JD007547.

  • Chen, L., S. Goto, and J. C. Vassilicos, 2006: Turbulent clustering of stagnation points and inertial particles. J. Fluid Mech., 553, 143154, doi:10.1017/S0022112006009177.

    • Search Google Scholar
    • Export Citation
  • Devenish, B. J., and Coauthors, 2012: Droplet growth in warm turbulent clouds. Quart. J. Roy. Meteor. Soc., 138, 14011429, doi:10.1002/qj.1897.

    • Search Google Scholar
    • Export Citation
  • Fessler, J. R., J. D. Kulick, and J. K. Eaton, 1994: Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids, 6, 3742–3749, doi:10.1063/1.868445.

  • Franklin, C. N., 2014: The effects of turbulent collision–coalescence on precipitation formation and precipitation–dynamical feedbacks in simulations of stratocumulus and shallow cumulus convection. Atmos. Chem. Phys., 14, 65576570, doi:10.5194/acp-14-6557-2014.

    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., P. A. Vaillancourt, M. K. Yau, and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci., 62, 2451–2466, doi:10.1175/JAS3493.1.

    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., P. A. Vaillancourt, and M. K. Yau, 2007: Statistics and parameterizations of the effect of turbulence on the geometric collision kernel of cloud droplets. J. Atmos. Sci., 64, 938954, doi:10.1175/JAS3872.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, doi:10.1146/annurev-fluid-011212-140750.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., L.-P. Wang, and T. Prabha, 2015: Macroscopic impacts of cloud and precipitation processes on maritime shallow convection as simulated by a large eddy simulation model with bin microphysics. Atmos. Chem. Phys., 15, 913926, doi:10.5194/acp-15-913-2015.

    • Search Google Scholar
    • Export Citation
  • Hu, K. C., and R. Mei, 1997: Effect of inertia on the particle collision coefficient in Gaussian turbulence. Proc. 1997 ASME Fluids Engineering Division Summer Meeting, Vancouver, BC, Canada, American Society of Mechanical Engineers, FEDSM97-3608.

  • Knight, C. A., J. Vivekanandan, and S. G. Lasher-Trapp, 2002: First radar echoes and the early ZDR history of Florida cumulus. J. Atmos. Sci., 59, 14541472, doi:10.1175/1520-0469(2002)059<1454:FREATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1962: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13, 8285, doi:10.1017/S0022112062000518.

    • Search Google Scholar
    • Export Citation
  • Leaitch, W. R., G. A. Isaac, J. W. Strapp, C. M. Banic, and H. A. Wiebe, 1992: The relationship between cloud droplet number concentrations and anthropogenic pollution: Observations and climatic implications. J. Geophys. Res., 97, 2463–2474, doi:10.1029/91JD02739.

  • Maxey, M., 1987: The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441465, doi:10.1017/S0022112087000193.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1969: Numerical methods for the simulation of turbulence. Phys. Fluids, 12, II-250II-257, doi:10.1063/1.1692445.

  • Pinsky, M., A. Khain, B. Grits, and M. Shapiro, 2006: Collisions of small drops in a turbulent flow. Part III: Relative droplet fluxes and swept volumes. J. Atmos. Sci., 63, 21232139, doi:10.1175/JAS3730.1.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Pruppacher, H., and J. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Reade, W. C., and L. R. Collins, 2000: Effect of preferential concentration on turbulent collision rates. Phys. Fluids, 12, 2530–2540, doi:10.1063/1.1288515.

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Butterworth-Heinemann, 290 pp.

  • Rosa, B., L.-P. Wang, M. Maxey, and W. Grabowski, 2011: An accurate and efficient method for treating aerodynamic interactions of cloud droplets. J. Comput. Phys., 230, 81098133, doi:10.1016/j.jcp.2011.07.012.

    • Search Google Scholar
    • Export Citation
  • Rosa, B., H. Parishani, O. Ayala, L.-P. Wang, and W. W. Grabowski, 2012: High-resolution simulation of turbulent collision of cloud droplets. Parallel Processing and Applied Mathematics, R. Wyrzykowski et al., Eds., Lecture Notes in Computer Science, Vol. 7204, Springer Berlin Heidelberg, 401–410, doi:10.1007/978-3-642-31500-8_41.

  • Rosa, B., H. Parishani, O. Ayala, W. W. Grabowski, and L.-P. Wang, 2013: Kinematic and dynamic collision statistics of cloud droplets from high-resolution simulations. New J. Phys., 15, 045032, doi:10.1088/1367-2630/15/4/045032.

  • Saffman, P. G., and J. S. Turner, 1956: On the collision of drops in turbulent clouds. J. Fluid Mech., 1, 16–30, doi:10.1017/S0022112056000020.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., L. Nuijens, and B. Stevens, 2010: Turbulence effects on warm-rain autoconversion in precipitating shallow convection. Quart. J. Roy. Meteor. Soc., 136, 17531762, doi:10.1002/qj.684.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., R. Shaw, and Z. Warhaft, 2010: Statistics of small-scale velocity fluctuations and internal intermittency in marine stratocumulus clouds. J. Atmos. Sci., 67, 262273, doi:10.1175/2009JAS3200.1.

    • Search Google Scholar
    • Export Citation
  • Squires, K. D., and J. K. Eaton, 1991: Preferential concentration of particles by turbulence. Phys. Fluids, 3, 11691178, doi:10.1063/1.858045.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958: The microstructure and colloidal stability of warm clouds. Tellus, 10A, 262271, doi:10.1111/j.2153-3490.1958.tb02012.x.

    • Search Google Scholar
    • Export Citation
  • Sullivan, N. P., S. Mahalingam, and R. M. Kerr, 1994: Deterministic forcing of homogeneous, isotropic turbulence. Phys. Fluids, 6, 1612–1614, doi:10.1063/1.868274.

  • Sundaram, S., and L. R. Collins, 1997: Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech., 335, 75109, doi:10.1017/S0022112096004454.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., R. M. Rauber, H. T. Ochs, and L. J. Miller, 1997: The microphysical structure and evolution of Hawaiian rainband clouds. Part I: Radar observations of rainbands containing high reflectivity cores. J. Atmos. Sci., 54, 369385, doi:10.1175/1520-0469(1997)054<0369:TMSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl., 43, 243–249, doi:10.1007/BF01993560.

  • Vaillancourt, P. A., and M. K. Yau, 2000: Review of particle–turbulence interactions and consequences for cloud physics. Bull. Amer. Meteor. Soc., 81, 285298, doi:10.1175/1520-0477(2000)081<0285:ROPIAC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, and W. W. Grabowski, 2001: Microscopic approach to cloud droplet growth by condensation. Part I: Model description and results without turbulence. J. Atmos. Sci., 58, 19451964, doi:10.1175/1520-0469(2001)058<1945:MATCDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, P. Bartello, and W. W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 34213435, doi:10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., and M. R. Maxey, 1993: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256, 2768, doi:10.1017/S0022112093002708.

    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., A. S. Wexler, and Y. Zhou, 1998: Statistical mechanical descriptions of turbulent coagulation. Phys. Fluids, 10, 2647–2651, doi:10.1063/1.869777.

  • Wang, L.-P., A. S. Wexler, and Y. Zhou, 2000: Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech., 415, 117153, doi:10.1017/S0022112000008661.

    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, and W. W. Grabowski, 2005: Improved formulations of the superposition method. J. Atmos. Sci., 62, 12551266, doi:10.1175/JAS3397.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, B. Rosa, and W. W. Grabowski, 2008: Turbulent collision efficiency of heavy particles relevant to cloud droplets. New J. Phys., 10, 075013, doi:10.1088/1367-2630/10/7/075013.

  • Wyszogrodzki, A., W. Grabowski, L.-P. Wang, and O. Ayala, 2013: Turbulent collision–coalescence in maritime shallow convection. Atmos. Chem. Phys., 13, 84718487, doi:10.5194/acp-13-8471-2013.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., L.-P. Wang, and W. W. Grabowski, 2008: Growth of cloud droplets by turbulent collision–coalescence. J. Atmos. Sci., 65, 331356, doi:10.1175/2007JAS2406.1.

    • Search Google Scholar
    • Export Citation
  • Yeung, P., and S. Pope, 1989: Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech., 207, 531586, doi:10.1017/S0022112089002697.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., A. S. Wexler, and L.-P. Wang, 2001: Modelling turbulent collision of bidisperse inertial particles. J. Fluid Mech., 433, 77104, doi:10.1017/S0022112000003372.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 966 416 133
PDF Downloads 621 214 16