A Lagrangian Study of Precipitation-Driven Downdrafts

Giuseppe Torri Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Giuseppe Torri in
Current site
Google Scholar
PubMed
Close
and
Zhiming Kuang Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Zhiming Kuang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Precipitation-driven downdrafts are an important component of deep convective systems. They stabilize the atmosphere by injecting relatively cold and dry air into the boundary layer. They have also been invoked as responsible for balancing surface latent and sensible heat fluxes in the heat and moisture budget of tropical boundary layers. This study is focused on precipitation-driven downdrafts and basic aspects of their dynamics in a case of radiative–convective equilibrium. Using Lagrangian particle tracking, it is shown that such downdrafts have very low initial heights, with most parcels originating within 1.5 km from the surface. The tracking is also used to compute the contribution of downdrafts to the flux of moist static energy at the top of the boundary layer, and it is found that this is on the same order of magnitude as the contribution due to convective updrafts, but much smaller than that due to turbulent mixing across the boundary layer top in the environment. Furthermore, considering the mechanisms driving the downdrafts, it is shown that the work done by rain evaporation is less than half that done by condensate loading.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0222.s1.

Corresponding author address: Giuseppe Torri, Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138. E-mail: torri@fas.harvard.edu

Abstract

Precipitation-driven downdrafts are an important component of deep convective systems. They stabilize the atmosphere by injecting relatively cold and dry air into the boundary layer. They have also been invoked as responsible for balancing surface latent and sensible heat fluxes in the heat and moisture budget of tropical boundary layers. This study is focused on precipitation-driven downdrafts and basic aspects of their dynamics in a case of radiative–convective equilibrium. Using Lagrangian particle tracking, it is shown that such downdrafts have very low initial heights, with most parcels originating within 1.5 km from the surface. The tracking is also used to compute the contribution of downdrafts to the flux of moist static energy at the top of the boundary layer, and it is found that this is on the same order of magnitude as the contribution due to convective updrafts, but much smaller than that due to turbulent mixing across the boundary layer top in the environment. Furthermore, considering the mechanisms driving the downdrafts, it is shown that the work done by rain evaporation is less than half that done by condensate loading.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0222.s1.

Corresponding author address: Giuseppe Torri, Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138. E-mail: torri@fas.harvard.edu

Supplementary Materials

    • Supplemental Materials (PDF 876 KB)
Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and M. Garstang, 1982: Subcloud layer energetics of precipitating convection. Mon. Wea. Rev., 110, 102117, doi:10.1175/1520-0493(1982)110<0102:SLEOPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1976: The thermodynamic transformation of the tropical subcloud layer by precipitation and downdrafts. J. Atmos. Sci., 33, 10081020, doi:10.1175/1520-0469(1976)033<1008:TTTOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. F. Silva Dias, 1979: Unsaturated downdraft thermodynamics in cumulonimbus. J. Atmos. Sci., 36, 10611071, doi:10.1175/1520-0469(1979)036<1061:UDTIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, W. A. Nawara, and A. P. Siebesma, 2014: On the deceiving aspects of mixing diagrams of deep cumulus convection. J. Atmos. Sci., 71, 5668, doi:10.1175/JAS-D-13-0127.1.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Atmos. Sci., 9, 227242, doi:10.1175/1520-0469(1952)009<0227:TWAEBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The thunderstorm. U. S. Weather Bureau Tech. Rep., 287 pp. [NTIS PB-234515.]

  • Cotton, W. R., G. Bryan, and S. C. van den Heever, 2011: Cumulonimbus clouds and severe convective storms. Storm and Cloud Dynamics—The Dynamics of Clouds and Precipitating Mesoscale Systems, G. B. William Cotton and S. van den Heever, Eds., International Geophysics Series, Vol. 99, Academic Press, 315–454, doi:10.1016/S0074-6142(10)09914-6.

  • Davies-Jones, R., 2003: An expression for effective buoyancy in surroundings with horizontal density gradients. J. Atmos. Sci., 60, 29222925, doi:10.1175/1520-0469(2003)060<2922:AEFEBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, doi:10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 592 pp.

  • Fankhauser, J. C., 1976: Structure of an evolving hailstorm, Part II: Thermodynamic structure and airflow in the near environment. Mon. Wea. Rev., 104, 576587, doi:10.1175/1520-0493(1976)104<0576:SOAEHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1985: The downburst: Microburst and macroburst. Satellite and Mesometeorology Research Paper 210, 122 pp.

  • Fujita, T. T., 1986: DFW microburst on August 2, 1985. Satellite and Mesometeorology Research Paper 217, 155 pp.

  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Humphreys, W. J., 1914: The thunderstorm and its phenomena. Mon. Wea. Rev., 42, 348380, doi:10.1175/1520-0493(1914)42<348:TTAIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2015: Effective buoyancy, inertial pressure, and the mechanical generation of boundary layer mass flux by cold pools. J. Atmos. Sci., 72, 31993213, doi:10.1175/JAS-D-14-0349.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and M. E. Nicholls, 1983: A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308319, doi:10.1175/1520-0493(1983)111<0308:ACAOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kamburova, P. L., and F. H. Ludlam, 1966: Rainfall evaporation in thunderstorm downdraughts. Quart. J. Roy. Meteor. Soc., 92, 510518, doi:10.1002/qj.49709239407.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. A. Houze, 1999: Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125, 12091229, doi:10.1002/qj.1999.49712555606.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 1987: Downdrafts within High Plains cumulonimbi. Part I: General kinematic structure. J. Atmos. Sci., 44, 9871008, doi:10.1175/1520-0469(1987)044<0987:DWHPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 1988: Downdrafts within High Plains cumulonimbi. Part II: Dynamics and thermodynamics. J. Atmos. Sci., 45, 39653982, doi:10.1175/1520-0469(1988)045<3965:DWHPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and W. R. Cotton, 1985: Convective cloud downdraft structure: An interpretive survey. Rev. Geophys., 23, 183215, doi:10.1029/RG023i002p00183.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1976: The flanking line, a severe thunderstorm intensification source. J. Atmos. Sci., 33, 686694, doi:10.1175/1520-0469(1976)033<0686:TFLAST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mal, S., and B. N. Desai, 1938: The mechanism of thundery conditions at Karachi. Quart. J. Roy. Meteor. Soc., 64, 525537, doi:10.1002/qj.49706427618.

    • Search Google Scholar
    • Export Citation
  • Miller, M. J., and A. K. Betts, 1977: Traveling convective storms over Venezuela. Mon. Wea. Rev., 105, 833848, doi:10.1175/1520-0493(1977)105<0833:TCSOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., and S. Sahany, 2011: Sensitivity of Kelvin waves and Madden–Julian oscillation to convective downdrafts in the NCAR-CAM3. Atmos. Sci. Lett., 12, 281287, doi:10.1002/asl.334.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1950: Structure and mechanism of the prefrontal squall line. J. Atmos. Sci., 7, 210222, doi:10.1175/1520-0469(1950)007<0210:SAMOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nie, J., and Z. Kuang, 2012: Responses of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels. J. Atmos. Sci., 69, 19361956, doi:10.1175/JAS-D-11-0279.1.

    • Search Google Scholar
    • Export Citation
  • Normand, C., 1946: Energy in the atmosphere. Quart. J. Roy. Meteor. Soc., 72, 145167, doi:10.1002/qj.49707231202.

  • Proctor, F. H., 1988: Numerical simulations of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci., 45, 31373160, doi:10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Proctor, F. H., 1989: Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci., 46, 21432165, doi:10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 14741483, doi:10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1994: Convective processes and tropical atmospheric circulations. Quart. J. Roy. Meteor. Soc., 120, 14311455, doi:10.1002/qj.49712052002.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1995: Regulation of moist convection over the west Pacific warm pool. J. Atmos. Sci., 52, 39453959, doi:10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., and D. Randall, 2015: A numerical investigation of boundary layer quasi-equilibrium. Geophys. Res. Lett., 42, 550556, doi:10.1002/2014GL062649.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 19431950, doi:10.1002/2015GL063227.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., C. J. Kessinger, and D. E. Kingsmill, 1994: Kinematic, thermodynamic, and visual structure of low-reflectivity microbursts. Mon. Wea. Rev., 122, 7292, doi:10.1175/1520-0493(1994)122<0072:KTAVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., and S. P. Nelson, 1982: Multiscale aspects of thunderstorm gust fronts and their effects on subsequent storm development. Mon. Wea. Rev., 110, 707718, doi:10.1175/1520-0493(1982)110<0707:MAOTGF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013, doi:10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799814, doi:10.1175/1520-0450(1969)008<0799:TROOUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1154 554 140
PDF Downloads 597 184 17