The MJO as a Dispersive, Convectively Coupled Moisture Wave: Theory and Observations

Ángel F. Adames Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Ángel F. Adames in
Current site
Google Scholar
PubMed
Close
and
Daehyun Kim Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Daehyun Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A linear wave theory for the Madden–Julian oscillation (MJO), previously developed by Sobel and Maloney, is extended upon in this study. In this treatment, column moisture is the only prognostic variable and the horizontal wind is diagnosed as the forced Kelvin and Rossby wave responses to an equatorial heat source/sink. Unlike the original framework, the meridional and vertical structure of the basic equations is treated explicitly, and values of several key model parameters are adjusted, based on observations. A dispersion relation is derived that adequately describes the MJO’s signal in the wavenumber–frequency spectrum and defines the MJO as a dispersive equatorial moist wave with a westward group velocity. On the basis of linear regression analysis of satellite and reanalysis data, it is estimated that the MJO’s group velocity is ~40% as large as its phase speed. This dispersion is the result of the anomalous winds in the wave modulating the mean distribution of moisture such that the moisture anomaly propagates eastward while wave energy propagates westward. The moist wave grows through feedbacks involving moisture, clouds, and radiation and is damped by the advection of moisture associated with the Rossby wave. Additionally, a zonal wavenumber dependence is found in cloud–radiation feedbacks that cause growth to be strongest at planetary scales. These results suggest that this wavenumber dependence arises from the nonlocal nature of cloud–radiation feedbacks; that is, anomalous convection spreads upper-level clouds and reduces radiative cooling over an extensive area surrounding the anomalous precipitation.

Corresponding author address: Ángel F. Adames, Department of Atmospheric Sciences, University of Washington, 408 ATG Building Box 351640, Seattle, WA 98195-1640. E-mail: angelf88@atmos.washington.edu

Abstract

A linear wave theory for the Madden–Julian oscillation (MJO), previously developed by Sobel and Maloney, is extended upon in this study. In this treatment, column moisture is the only prognostic variable and the horizontal wind is diagnosed as the forced Kelvin and Rossby wave responses to an equatorial heat source/sink. Unlike the original framework, the meridional and vertical structure of the basic equations is treated explicitly, and values of several key model parameters are adjusted, based on observations. A dispersion relation is derived that adequately describes the MJO’s signal in the wavenumber–frequency spectrum and defines the MJO as a dispersive equatorial moist wave with a westward group velocity. On the basis of linear regression analysis of satellite and reanalysis data, it is estimated that the MJO’s group velocity is ~40% as large as its phase speed. This dispersion is the result of the anomalous winds in the wave modulating the mean distribution of moisture such that the moisture anomaly propagates eastward while wave energy propagates westward. The moist wave grows through feedbacks involving moisture, clouds, and radiation and is damped by the advection of moisture associated with the Rossby wave. Additionally, a zonal wavenumber dependence is found in cloud–radiation feedbacks that cause growth to be strongest at planetary scales. These results suggest that this wavenumber dependence arises from the nonlocal nature of cloud–radiation feedbacks; that is, anomalous convection spreads upper-level clouds and reduces radiative cooling over an extensive area surrounding the anomalous precipitation.

Corresponding author address: Ángel F. Adames, Department of Atmospheric Sciences, University of Washington, 408 ATG Building Box 351640, Seattle, WA 98195-1640. E-mail: angelf88@atmos.washington.edu
Save
  • Ackerman, T. P., K.-N. Liou, F. P. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, doi:10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2014a: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, doi:10.1175/JAS-D-13-0254.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2014b: Three-dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. J. Atmos. Sci., 71, 46614681, doi:10.1175/JAS-D-14-0091.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, doi:10.1175/JAS-D-15-0003.1.

    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., and D. A. Randall, 2016: Global-scale convective aggregation: Implications for the Madden-Julian Oscillation. J. Adv. Model. Earth Syst., doi:10.1002/2015MS000498, in press.

  • Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, doi:10.1175/JCLI-D-12-00272.1.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., M. Branson, Z. Kuang, D. A. Randall, and E. Tziperman, 2015: MJO intensification with warming in the superparameterized CESM. J. Climate, 28, 27062724, doi:10.1175/JCLI-D-14-00494.1.

    • Search Google Scholar
    • Export Citation
  • Bantzer, C. H., and J. M. Wallace, 1996: Intraseasonal variability in tropical mean temperature and precipitation and their relation to the tropical 40–50 day oscillation. J. Atmos. Sci., 53, 30323045, doi:10.1175/1520-0469(1996)053<3032:IVITMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296, doi:10.1175/2009JAS3030.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. W. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 33273349, doi:10.1175/JAS-D-13-0240.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, doi:10.1175/JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, doi:10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, doi:10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, doi:10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, doi:10.1175/JAS-D-13-038.1.

    • Search Google Scholar
    • Export Citation
  • Crueger, T., and B. Stevens, 2015: The effect of atmospheric radiative heating by clouds on the Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 7, 854864, doi:10.1002/2015MS000434.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative-convective instability. J. Adv. Model. Earth Syst., 6, 7590, doi:10.1002/2013MS000270.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 16691679, doi:10.1175/1520-0469(2002)059<1669:LSMOAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2005: Large-scale modes in a rotating atmosphere with radiative–convective instability and WISHE. J. Atmos. Sci., 62, 40844094, doi:10.1175/JAS3582.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2007: A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A, 344354, doi:10.1111/j.1600-0870.2007.00230.x.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., G. N. Kiladis, A. Denno, and T. M. Rickenbach, 2008: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813833, doi:10.1175/2007JAS2314.1.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst., 6, 420440, doi:10.1002/2013MS000272.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1981: Space-time spectral analysis and its application to atmospheric waves. J. Meteor. Soc. Japan, 60, 156171.

  • Heckley, W. A., and A. E. Gill, 1984: Some simple analytical solutions to the problem of forced equatorial long waves. Quart. J. Roy. Meteor. Soc., 110, 203217, doi:10.1002/qj.49711046314.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948, doi:10.1175/2008JAS2675.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, doi:10.1175/JCLI-D-11-00310.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and H. Murakami, 2014: Moisture asymmetry and MJO eastward propagation in an aquaplanet general circulation model. J. Climate, 27, 87478760, doi:10.1175/JCLI-D-14-00148.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and D. A. Randall, 1994: Low-frequency oscillations in radiative-convective systems. J. Atmos. Sci., 51, 10891099, doi:10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and D. A. Randall, 1995: Low-frequency oscillations in radiative-convective systems. Part II: An idealized model. J. Atmos. Sci., 52, 478490, doi:10.1175/1520-0469(1995)052<0478:LFOIRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., F. Liu, M.-S. Ahn, Y.-M. Yang, and B. Wang, 2013: Role of SST structure on convectively coupled Kelvin–Rossby waves and its implication on MJO formation. J. Climate, 26, 59155930, doi:10.1175/JCLI-D-12-00303.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, doi:10.1175/2009JCLI3063.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, and I.-S. Kang, 2011: A mechanism denial study on the Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 3, M12007, doi:10.1029/2011MS000081.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-S. Ahn, I.-S. Kang, and A. D. Del Genio, 2015: Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Climate, 28, 69796994, doi:10.1175/JCLI-D-14-00767.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, doi:10.1175/JCLI-D-13-00480.1.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436, doi:10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and D. E. Waliser, 2011: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer, 614 pp.

  • Lee, S.-K., C. Wang, and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272284, doi:10.1175/2008JCLI2303.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and B. Mapes, 2004: Wind shear effects on cloud-radiation feedback in the western Pacific warm pool. Geophys. Res. Lett., 31, L16118, doi:10.1029/2004GL020199.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, and P. Bechtold, 2013: Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci., 70, 26962712, doi:10.1175/JAS-D-13-029.1.

    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2012: A frictional skeleton model for the Madden–Julian oscillation. J. Atmos. Sci., 69, 27492758, doi:10.1175/JAS-D-12-020.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and B. Khouider, 2001: A numerical strategy for efficient modeling of the equatorial wave guide. Proc. Natl. Acad. Sci. USA, 98, 13411346, doi:10.1073/pnas.98.4.1341.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and M. G. Shefter, 2001: Waves and instabilities for model tropical convective parameterizations. J. Atmos. Sci., 58, 896914, doi:10.1175/1520-0469(2001)058<0896:WAIFMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 21532168, doi:10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2(5), doi:10.3894/JAMES.2010.2.5.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, doi:10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2007: Seasonality and regionality of the Madden–Julian oscillation, Kelvin wave, and equatorial Rossby wave. J. Atmos. Sci., 64, 44004416, doi:10.1175/2007JAS2179.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651, doi:10.1002/qj.49712656902.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., and R. A. Madden, 1996: The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53, 586597, doi:10.1175/1520-0469(1996)053<0586:TEAVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 18761894, doi:10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57, 17411766, doi:10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, doi:10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neena, J., J. Y. Lee, D. Waliser, B. Wang, and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, doi:10.1175/JCLI-D-13-00624.1.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., and C. S. Bretherton, 2005: A simplified model of the Walker circulation with an interactive ocean mixed layer and cloud-radiative feedbacks. J. Climate, 18, 42164234, doi:10.1175/JCLI3534.1.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, doi:10.1175/JAS-D-13-0119.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000a: The Hadley circulation as a radiative–convective instability. J. Atmos. Sci., 57, 12861297, doi:10.1175/1520-0469(2000)057<1286:THCAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000b: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, doi:10.1002/qj.49712656406.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, doi:10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, doi:10.1175/2008JCLI2739.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and Ž. Fuchs, 2007: A theory for the spinup of tropical depressions. Quart. J. Roy. Meteor. Soc., 133, 17431754, doi:10.1002/qj.125.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1(9), doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2014: Rayleigh damping in the free troposphere. J. Atmos. Sci., 71, 553565, doi:10.1175/JAS-D-13-062.1.

  • Roundy, P. E., 2014: Regression analysis of zonally narrow components of the MJO. J. Atmos. Sci., 71, 42534275, doi:10.1175/JAS-D-13-0288.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, doi:10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., 1991: A simple model of the climatology and variability of the low-level wind field in the tropics. J. Climate, 4, 164179, doi:10.1175/1520-0442(1991)004<0164:ASMOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2002: Water vapor as an active scalar in tropical atmospheric dynamics. Chaos, 12, 451459, doi:10.1063/1.1480795.

  • Sobel, A. H., and H. Gildor, 2003: A simple time-dependent model of SST hot spots. J. Climate, 16, 39783992, doi:10.1175/1520-0442(2003)016<3978:ASTMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, doi:10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, doi:10.1175/JAS-D-14-0052.1.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, doi:10.1175/JCLI-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009a: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523, doi:10.1175/2008JAS2690.1.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009b: The moisture mode in the quasi-equilibrium tropical circulation model. Part II: Nonlinear behavior on an equatorial β plane. J. Atmos. Sci., 66, 15251542, doi:10.1175/2008JAS2691.1.

    • Search Google Scholar
    • Export Citation
  • Sukhatme, J., 2014: Low-frequency modes in an equatorial shallow-water model with moisture gradients. Quart. J. Roy. Meteor. Soc., 140, 18381846, doi:10.1002/qj.2264.

    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., C.-H. Sui, and T. Li, 2015: Moistening processes for Madden–Julian oscillations during DYNAMO/CINDY. J. Climate, 28, 30413057, doi:10.1175/JCLI-D-14-00416.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, doi:10.1175/2008JCLI2731.1.

  • Wang, B., 2011: Theory. Intraseasonal Variability in the Atmosphere-Ocean Climate System, Springer, 307–360.

  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397413, doi:10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, doi:10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, doi:10.1002/2013MS000269.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and L. Deng, 2013: Comparison of moist static energy and budget between the GCM-simulated Madden–Julian oscillation and observations over the Indian Ocean and western Pacific. J. Climate, 26, 49814993, doi:10.1175/JCLI-D-12-00607.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., E. S. Sarachik, and D. S. Battisti, 2001: Thermally driven tropical circulations under Rayleigh friction and Newtonian cooling: Analytic solutions. J. Atmos. Sci., 58, 724741, doi:10.1175/1520-0469(2001)058<0724:TDTCUR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and M. Murakami, 1970: Spectrum analysis of symmetric and anti-symmetric equatorial waves. J. Meteor. Soc. Japan, 48, 331347.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 316, doi:10.1175/JAS-D-11-033.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, and C. Chou, 2000: A quasi-equilibrium tropical circulation model—Implementation and simulation. J. Atmos. Sci., 57, 17671796, doi:10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, doi:10.1175/JCLI-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., and H. Hendon, 2015: Role of large-scale moisture advection for simulation of the MJO with increased entrainment. Quart. J. Roy. Meteor. Soc., 141, 21272136, doi:10.1002/qj.2510.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4097 1446 199
PDF Downloads 2891 791 71