The Formation of Small-Scale Atmospheric Vortices via Baroclinic Horizontal Shearing Instability

Michael S. Buban Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Michael S. Buban in
Current site
Google Scholar
PubMed
Close
and
Conrad L. Ziegler NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Conrad L. Ziegler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents a series of idealized simulations that attempt to replicate shear zones typical of drylines and other near-surface boundaries in the presence of horizontal virtual density gradients. The series of dry simulations are initialized to contain a north–south-oriented potential temperature gradient collocated with a constant-vorticity shear zone and employ north–south periodic boundary conditions. In all simulations, the shear zones frontogenetically collapse as wavelike perturbations develop that eventually roll up into discrete vortices. Convergence associated with the developing solenoidally forced secondary vertical circulation induces an accumulative shear zone contraction, which in turn increases the vertical vorticity of both the shear zone and the intensifying vortices, owing primarily to stretching that is partially offset by tilting of the vertical vorticity into the horizontal by the secondary circulation. The simulated vortices bear strong morphological resemblance to vortices reported in many earlier laboratory and numerical studies. To assess hypothesized baroclinic effects on the instability mechanism, the present results are compared to a previous study of barotropic horizontal shearing instability (HSI). Linear theory has been modified for the baroclinic cases by introducing a parametric model of frontal contraction, according to which the growth rate expressions incorporate model-prescribed, continuously varying shear zone widths. This modified parametric model is found to provide excellent agreement with the growth rates computed from the present simulations, suggesting that HSI can be extended to the baroclinic shear zone cases to a very good approximation over a range of near-surface boundary types.

Corresponding author address: Dr. Michael S. Buban, Atmospheric Turbulence and Diffusion Division, NOAA/OAR/Air Resources Laboratory, 456 S. Illinois Ave., Oak Ridge, TN 37830. E-mail: Michael.buban@noaa.gov

Abstract

This study presents a series of idealized simulations that attempt to replicate shear zones typical of drylines and other near-surface boundaries in the presence of horizontal virtual density gradients. The series of dry simulations are initialized to contain a north–south-oriented potential temperature gradient collocated with a constant-vorticity shear zone and employ north–south periodic boundary conditions. In all simulations, the shear zones frontogenetically collapse as wavelike perturbations develop that eventually roll up into discrete vortices. Convergence associated with the developing solenoidally forced secondary vertical circulation induces an accumulative shear zone contraction, which in turn increases the vertical vorticity of both the shear zone and the intensifying vortices, owing primarily to stretching that is partially offset by tilting of the vertical vorticity into the horizontal by the secondary circulation. The simulated vortices bear strong morphological resemblance to vortices reported in many earlier laboratory and numerical studies. To assess hypothesized baroclinic effects on the instability mechanism, the present results are compared to a previous study of barotropic horizontal shearing instability (HSI). Linear theory has been modified for the baroclinic cases by introducing a parametric model of frontal contraction, according to which the growth rate expressions incorporate model-prescribed, continuously varying shear zone widths. This modified parametric model is found to provide excellent agreement with the growth rates computed from the present simulations, suggesting that HSI can be extended to the baroclinic shear zone cases to a very good approximation over a range of near-surface boundary types.

Corresponding author address: Dr. Michael S. Buban, Atmospheric Turbulence and Diffusion Division, NOAA/OAR/Air Resources Laboratory, 456 S. Illinois Ave., Oak Ridge, TN 37830. E-mail: Michael.buban@noaa.gov
Save
  • Arnott, N. R., Y. P. Richardson, J. M. Wurman, and E. M. Rasmussen, 2006: Relationship between a weakening cold front, misocyclones, and cloud development on 10 June 2002 during IHOP. Mon. Wea. Rev., 134, 311335, doi:10.1175/MWR3065.1.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969, doi:10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buban, M. S., 2014: The formation of small-scale atmospheric vortices via horizontal shearing instability. Ph.D. dissertation, University of Oklahoma, 215 pp. [Available online at http://hdl.handle.net/11244/13870.]

  • Buban, M. S., and C. L. Ziegler, 2016: The formation of small-scale atmospheric vortices via horizontal shearing instability. J. Atmos. Sci., 73, 20612084, doi:10.1175/JAS-D-14-0355.1.

    • Search Google Scholar
    • Export Citation
  • Buban, M. S., C. L. Ziegler, E. N. Rasmussen, and Y. P. Richardson, 2007: The dryline on 22 May 2002 during IHOP: Ground radar and in situ data analyses of the dryline and boundary layer evolution. Mon. Wea. Rev., 135, 24732505, doi:10.1175/MWR3453.1.

    • Search Google Scholar
    • Export Citation
  • Buban, M. S., C. L. Ziegler, E. R. Mansell, and Y. P. Richardson, 2012: Simulation of dryline misovortex dynamics and cumulus formation. Mon. Wea. Rev., 140, 35253551, doi:10.1175/MWR-D-11-00189.1.

    • Search Google Scholar
    • Export Citation
  • Campbell, P. C., B. Geerts, and P. T. Bergmaier, 2014: A dryline in southeast Wyoming. Part I: Multiscale analysis using observations and modeling on 22 June 2010. Mon. Wea. Rev., 142, 268289, doi:10.1175/MWR-D-13-00049.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252, doi:10.1175/JAS3681.1.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., T. L. Clark, and M. W. Moncrieff, 1991: The Denver cyclone. Part II: Interaction with the convective boundary layer. J. Atmos. Sci., 48, 21092126, doi:10.1175/1520-0469(1991)048<2109:TDCPII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., D. E. Kingsmill, and C. R. Young, 2005: Misocyclone characteristics along Florida gust fronts during CaPE. Mon. Wea. Rev., 133, 33453367, doi:10.1175/MWR3040.1.

    • Search Google Scholar
    • Export Citation
  • Gall, R. L., R. T. Williams, and T. L. Clark, 1987: On the minimum scale of fronts. J. Atmos. Sci., 44, 25622574, doi:10.1175/1520-0469(1987)044<2562:OTMSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 1989: Fully Lagrangian numerical solutions of unbalanced frontogenesis and frontal collapse. J. Atmos. Sci., 46, 717739, doi:10.1175/1520-0469(1989)046<0717:FLNSOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 2003: Back to frontogenesis. A Half Century of Progress in Meteorology: A Tribute to Richard Reed, Meteor. Monogr., No. 31, Amer. Meteor. Soc., 4960, doi:10.1175/0065-9401-31.53.49.

  • Jenkins, G. M., and D. G. Watts, 1969: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Kawashima, M., 2011: Numerical study of horizontal shear instability waves along narrow cold frontal rainbands. J. Atmos. Sci., 68, 878903, doi:10.1175/2010JAS3599.1.

    • Search Google Scholar
    • Export Citation
  • Kawashima, M., and Y. Fujiyoshi, 2005: Shear instability wave along a snowband: Instability structure, evolution, and energetics derived from dual-Doppler radar data. J. Atmos. Sci., 62, 351370, doi:10.1175/JAS-3392.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and R. B. Wilhelmson, 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260, doi:10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, doi:10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. P. Richardson, and J. M. Wurman, 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 17491768, doi:10.1175/MWR3367.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and M. J. Molemaker, 2011: Baroclinic frontal arrest: A sequal to unstable frontogenesis. J. Phys. Oceanogr., 41, 601619, doi:10.1175/2010JPO4493.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., M. J. Molemaker, and E. I. Olafsdottir, 2009: Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr., 39, 31113129, doi:10.1175/2009JPO4186.1.

    • Search Google Scholar
    • Export Citation
  • Miao, Q., and B. Geerts, 2007: Finescale vertical structure and dynamics of some dryline boundaries observed in IHOP. Mon. Wea. Rev., 135, 41614184, doi:10.1175/2007MWR1982.1.

    • Search Google Scholar
    • Export Citation
  • Murphey, H. V., R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, 2006: Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation. Mon. Wea. Rev., 134, 406430, doi:10.1175/MWR3063.1.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., and L. J. Wicker, 2000: The influence of topography and lower-tropospheric winds on dryline morphology. Mon. Wea. Rev., 128, 21652189, doi:10.1175/1520-0493(2000)128<2165:TIOTAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pietrycha, A. E., and E. N. Rasmussen, 2004: Finescale surface observations of the dryline: A mobile mesonet perspective. Wea. Forecasting, 19, 10751088, doi:10.1175/819.1.

    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1879: On the stability, or instability, of certain fluid motions. Proc. London Math. Soc., S1-11, 5772, doi:10.1112/plms/s1-11.1.57.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, doi:10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Frankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Kruger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815, doi:10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev., 121, 11341151, doi:10.1175/1520-0493(1993)121<1134:AOSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci., 52, 263285, doi:10.1175/1520-0469(1995)052<0263:AMSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasmussen, M. S. Buban, Y. P. Richardson, L. J. Miller, and R. M. Rabin, 2007: The “Triple Point” on 24 May 2002 during IHOP. Part II: Ground-radar and in situ boundary layer analysis of cumulus development and convection initiation. Mon. Wea. Rev., 135, 24432472, doi:10.1175/MWR3411.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. R. Mansell, J. M. Straka, D. R. MacGorman, and D. W. Burgess, 2010: The impact of spatial variations of low-level stability on the life cycle of a simulated supercell storm. Mon. Wea. Rev., 138, 17381766, doi:10.1175/2009MWR3010.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 90 11
PDF Downloads 225 79 7