Influence of the Quasi-Biennial Oscillation and Sea Surface Temperature Variability on Downward Wave Coupling in the Northern Hemisphere

Sandro W. Lubis GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Sandro W. Lubis in
Current site
Google Scholar
PubMed
Close
,
Katja Matthes GEOMAR Helmholtz Centre for Ocean Research Kiel, and Christian-Albrechts Universität zu Kiel, Kiel, Germany

Search for other papers by Katja Matthes in
Current site
Google Scholar
PubMed
Close
,
Nour-Eddine Omrani Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway, and GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Nour-Eddine Omrani in
Current site
Google Scholar
PubMed
Close
,
Nili Harnik Department of Geophysical, Atmospheric and Planetary Sciences, Tel Aviv University, Tel Aviv, Israel, and Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Nili Harnik in
Current site
Google Scholar
PubMed
Close
, and
Sebastian Wahl GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Sebastian Wahl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Downward wave coupling occurs when an upward-propagating planetary wave from the troposphere decelerates the flow in the upper stratosphere and forms a downward reflecting surface that redirects waves back to the troposphere. To test this mechanism and potential factors influencing the downward wave coupling, three 145-yr sensitivity simulations with NCAR’s Community Earth System Model [CESM1(WACCM)], a state-of-the-art high-top chemistry–climate model, are analyzed. The results show that the quasi-biennial oscillation (QBO) and SST variability significantly impact downward wave coupling. Without the QBO, the occurrence of downward wave coupling is significantly suppressed. In contrast, stronger and more persistent downward wave coupling occurs when SST variability is excluded.

The above influence on the occurrence of downward wave coupling is mostly due to a direct influence of the QBO and SST variability on stratospheric planetary wave source and propagation. The strengths of the tropospheric circulation and surface responses to a given downward wave coupling event, however, behave differently. The surface anomaly is significantly weaker (stronger) in the experiment with fixed SSTs (without QBO), even though the statistical signal of downward wave coupling is strongest (weakest) in this experiment. This apparent mismatch is explained by the differences in the strength of the synoptic-scale eddy–mean flow feedback and the possible contribution of SST anomalies in the North Atlantic during the downward wave coupling event. The weaker synoptic-scale eddy–mean flow feedback and the absence of the positive NAO-related SST-tripole pattern in the fixed SST experiment are consistent with a weaker tropospheric response to downward wave coupling. The results highlight the importance of synoptic-scale eddies in setting the tropospheric response to downward wave coupling.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0072.s1.

Corresponding author address: Sandro W. Lubis, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg. 20, 24105 Kiel, Germany. E-mail: slubis@geomar.de

Abstract

Downward wave coupling occurs when an upward-propagating planetary wave from the troposphere decelerates the flow in the upper stratosphere and forms a downward reflecting surface that redirects waves back to the troposphere. To test this mechanism and potential factors influencing the downward wave coupling, three 145-yr sensitivity simulations with NCAR’s Community Earth System Model [CESM1(WACCM)], a state-of-the-art high-top chemistry–climate model, are analyzed. The results show that the quasi-biennial oscillation (QBO) and SST variability significantly impact downward wave coupling. Without the QBO, the occurrence of downward wave coupling is significantly suppressed. In contrast, stronger and more persistent downward wave coupling occurs when SST variability is excluded.

The above influence on the occurrence of downward wave coupling is mostly due to a direct influence of the QBO and SST variability on stratospheric planetary wave source and propagation. The strengths of the tropospheric circulation and surface responses to a given downward wave coupling event, however, behave differently. The surface anomaly is significantly weaker (stronger) in the experiment with fixed SSTs (without QBO), even though the statistical signal of downward wave coupling is strongest (weakest) in this experiment. This apparent mismatch is explained by the differences in the strength of the synoptic-scale eddy–mean flow feedback and the possible contribution of SST anomalies in the North Atlantic during the downward wave coupling event. The weaker synoptic-scale eddy–mean flow feedback and the absence of the positive NAO-related SST-tripole pattern in the fixed SST experiment are consistent with a weaker tropospheric response to downward wave coupling. The results highlight the importance of synoptic-scale eddies in setting the tropospheric response to downward wave coupling.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0072.s1.

Corresponding author address: Sandro W. Lubis, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg. 20, 24105 Kiel, Germany. E-mail: slubis@geomar.de
Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovoy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, doi:10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., M. A. Giorgetta, R. Garcia-Herrera, and E. Manzini, 2009: Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J. Geophys. Res., 114, D13109, doi:10.1029/2008JD011445.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and E. K. Schneider, 2014: Comparison of the SST-forced responses between coupled and uncoupled climate simulations. J. Climate, 27, 740756, doi:10.1175/JCLI-D-13-00092.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., E. K. Schneider, B. P. Kirtman, and I. Colfescu, 2013: Evaluation of weather noise and its role in climate model simulations. J. Climate, 26, 37663784, doi:10.1175/JCLI-D-12-00292.1.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, doi:10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, doi:10.1175/JCLI4278.1.

    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., and T. A. Shaw, 2015: Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res. Atmos., 120, 13741390, doi:10.1002/2014JD022116.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the Transfer of Energy in Stationary Mountain Waves. I Kommisjon hos Aschehoug, 23 pp.

  • Garfinkel, C. I., T. A. Shaw, D. L. Hartmann, and D. W. Waugh, 2012: Does the Holton–Tan mechanism explain how the quasi-biennial oscillation modulates the Arctic polar vortex? J. Atmos. Sci., 69, 17131733, doi:10.1175/JAS-D-11-0209.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and E. P. Gerber, 2013: The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 20772095, doi:10.1175/JCLI-D-12-00301.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.

  • Hamilton, K., 1993: An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere. J. Atmos. Sci., 50, 34683474, doi:10.1175/1520-0469(1993)050<3468:AEOOSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hansen, F., K. Matthes, and L. J. Gray, 2013: Sensitivity of stratospheric dynamics and chemistry to QBO nudging width in the chemistry–climate model WACCM. J. Geophys. Res. Atmos., 118, 10 46410 474, doi:10.1002/jgrd.50812.

    • Search Google Scholar
    • Export Citation
  • Hansen, F., K. Matthes, C. Petrick, and W. Wang, 2014: The influence of natural and anthropogenic factors on major stratospheric sudden warmings. J. Geophys. Res. Atmos., 119, 81178136, doi:10.1002/2013JD021397.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., 2009: Observed stratospheric downward reflection and its relation to upward pulses of wave activity. J. Geophys. Res., 114, D08120, doi:10.1029/2008JD010493.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., and R. S. Lindzen, 2001: The effect of reflecting surfaces on the vertical structure and variability of stratospheric planetary waves. J. Atmos. Sci., 58, 28722894, doi:10.1175/1520-0469(2001)058<2872:TEORSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, doi:10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2013: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell et al., Eds., Amer. Geophys. Union, 1–35, doi:10.1029/134GM01.

  • Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2012: On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res, 117, D19110, doi:10.1029/2012JD017819.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, and D. Handorf, 2013: Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus, 65A, 19375, doi:10.3402/tellusa.v65i0.19375.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N., and N.-E. Omrani, 2014: Has a warm North Atlantic contributed to recent European cold winters? Environ. Res. Lett., 9, 061001, doi:10.1088/1748-9326/9/6/061001.

    • Search Google Scholar
    • Export Citation
  • Kinnison, D. E., and Coauthors, 2007: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879.

    • Search Google Scholar
    • Export Citation
  • Kunz, T., and R. J. Greatbatch, 2013: On the northern annular mode surface signal associated with stratospheric variability. J. Atmos. Sci., 70, 21032118, doi:10.1175/JAS-D-12-0158.1.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. Robinson, I. Blad, N. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1982: On the interannual variability of the middle stratosphere during the northern winters. J. Meteor. Soc. Japan, 60, 124139.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2013: Influences of ENSO on stratospheric variability, and the descent of stratospheric perturbations into the lower troposphere. J. Climate, 26, 47254748, doi:10.1175/JCLI-D-12-00581.1.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, doi:10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, H., T. J. Bracegirdle, T. Phillips, A. Bushell, and L. Gray, 2014: Mechanisms for the Holton–Tan relationship and its decadal variation. J. Geophys. Res. Atmos., 119, 28112830, doi:10.1002/2013JD021352.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881, doi:10.1175/JCLI3826.1.

    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., R. R. Garcia, D. E. Kinnison, B. A. Boville, F. Sassi, S. C. Solomon, and K. Matthes, 2007: Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J. Geophys. Res., 112, D23306, doi:10.1029/2006JD008306.

    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, doi:10.1175/JCLI-D-12-00558.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthes, K., D. R. Marsh, R. R. Garcia, D. E. Kinnison, F. Sassi, and S. Walters, 2010: Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. J. Geophys. Res., 115, D18110, doi:10.1029/2009JD013020.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, doi:10.1038/305593a0.

  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Omrani, N.-E., N. Keenlyside, J. Bader, and E. Manzini, 2014: Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dyn., 42, 649663, doi:10.1007/s00382-013-1860-3.

    • Search Google Scholar
    • Export Citation
  • Omrani, N.-E., J. Bader, N. Keenlyside, and E. Manzini, 2016: Troposphere–stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model. Climate Dyn., 46, 13971415, doi:10.1007/s00382-015-2654-6, in press.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, doi:10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026, doi:10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., K. Matthes, N. Calvo, and L. J. Gray, 2011: Influence of the quasi-biennial oscillation and El Niño–Southern Oscillation on the frequency of sudden stratospheric warmings. J. Geophys. Res., 116, D20111, doi:10.1029/2011JD015757.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, doi:10.1029/1998RG000054.

  • Sampe, T., H. Nakamura, and A. Goto, 2013: Potential influence of a midlatitude oceanic frontal zone on the annular variability in the extratropical atmosphere as revealed by aqua-planet experiments. J. Meteor. Soc. Japan, 91A, 243267, doi:10.2151/jmsj.2013-A09.

    • Search Google Scholar
    • Export Citation
  • Schimanke, S., T. Spangehl, H. Huebener, and U. Cubasch, 2013: Variability and trends of major stratospheric warmings in simulations under constant and increasing GHG concentrations. Climate Dyn., 40, 17331747, doi:10.1007/s00382-012-1530-x.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., L. Shi, J. P. Kossin, and J. J. Bates, 2013: Identifying the MJO, equatorial waves, and their impacts using 32 years of HIRS upper-tropospheric water vapor. J. Climate, 26, 14181431, doi:10.1175/JCLI-D-12-00034.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and J. Perlwitz, 2013: The life cycle of Northern Hemisphere downward wave coupling between the stratosphere and troposphere. J. Climate, 26, 17451763, doi:10.1175/JCLI-D-12-00251.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Perlwitz, and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 63656381, doi:10.1175/2010JCLI3804.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Perlwitz, and O. Weiner, 2014: Troposphere–stratosphere coupling: Links to North Atlantic weather and climate, including their representation in CMIP5 models. J. Geophys. Res. Atmos., 119, 58645880, doi:10.1002/2013JD021191.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725, doi:10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • SPARC CCMVal, 2010: SPARC report on the evaluation of chemistry-climate models. Stratosphere–Troposphere Processes and Their Role in Climate Tech. Rep. 5, WCRP-132, WMO/TD-1526, 426 pp. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5/.]

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van Loon, H., and K. Labitzke, 1987: The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon. Wea. Rev., 115, 357369, doi:10.1175/1520-0493(1987)115<0357:TSOPVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WMO, 2011: Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project Rep. 52, 516 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 655 159 9
PDF Downloads 423 101 3