• Ao, C. O., , D. E. Waliser, , S. K. Chan, , J.-L. Li, , B. Tian, , F. Xie, , and A. J. Mannucci, 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117, doi:10.1029/2012JD017598.

    • Search Google Scholar
    • Export Citation
  • Baklanov, A. A., and Coauthors, 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123128, doi:10.1175/2010BAMS2797.1.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., , A. Seifert, , J. Förstner, , D. Majewski, , M. Raschendorfer, , and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Batchvarova, E., , and S.-E. Gryning, 1991: Applied model for the growth of the daytime mixed layer. Bound.-Layer Meteor., 56, 261274, doi:10.1007/BF00120423.

    • Search Google Scholar
    • Export Citation
  • Blay-Carreras, E., and Coauthors, 2014: Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmos. Chem. Phys., 14, 45154530, doi:10.5194/acp-14-4515-2014.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., , and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, doi:10.1038/nature08707.

    • Search Google Scholar
    • Export Citation
  • Chan, K. M., , and R. Wood, 2013: The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J. Geophys. Res. Atmos., 118, 12 42212 434, doi:10.1002/2013JD020147.

    • Search Google Scholar
    • Export Citation
  • Chen, X., 2013: The plateau scale land–air interaction and its connections to troposphere and lower stratosphere. Ph.D. dissertation, University of Twente, 164 pp. [Available online at https://www.itc.nl/library/papers_2013/phd/chen.pdf.]

  • Chen, X., , J. A. Añel, , Z. Su, , L. de la Torre, , H. Kelder, , J. van Peet, , and Y. Ma, 2013: The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau. PLoS ONE, 8, e56909, doi:10.1371/journal.pone.0056909.

    • Search Google Scholar
    • Export Citation
  • Cuesta, J., and Coauthors, 2008: Multiplatform observations of the seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset, Algeria, in the framework of the African Monsoon Multidisciplinary Analysis field campaign conducted in 2006. J. Geophys. Res., 113, D00C07, doi:10.1029/2007JD009417.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A., 1982: Models and observations of the growth of the atmospheric boundary layer. Bound.-Layer Meteor., 23, 283306, doi:10.1007/BF00121117.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, doi:10.1029/97WR03499.

    • Search Google Scholar
    • Export Citation
  • Endo, S., , T. Shinoda, , T. Hiyama, , H. Uyeda, , K. Nakamura, , H. Tanaka, , and K. Tsuboki, 2008: Characteristics of vertical circulation in the convective boundary layer over the Huaihe River basin in China in the early summer of 2004. J. Appl. Meteor. Climatol., 47, 29112928, doi:10.1175/2008JAMC1769.1.

    • Search Google Scholar
    • Export Citation
  • Fan, S., , Q. Fan, , W. Yu, , X. Luo, , B. Wang, , L. Song, , and K. Leong, 2011: Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006: Measurement and model results. Atmos. Chem. Phys., 11, 62976310, doi:10.5194/acp-11-6297-2011.

    • Search Google Scholar
    • Export Citation
  • Fochesatto, G. J., , P. Drobinski, , C. Flamant, , D. Guedalia, , C. Sarrat, , P. H. Flamant, , and J. Pelon, 2001: Evidence of dynamical coupling between the residual layer and the developing convective boundary layer. Bound.-Layer Meteor., 99, 451464, doi:10.1023/A:1018935129006.

    • Search Google Scholar
    • Export Citation
  • Freire, L. S., , and N. L. Dias, 2013: Residual layer effects on the modeling of convective boundary layer growth rates with a slab model using FIFE data. J. Geophys. Res. Atmos., 118, 12 86912 878, doi:10.1002/jgrd.50796.

    • Search Google Scholar
    • Export Citation
  • Gamo, M., 1996: Thickness of the dry convection and large-scale subsidence above deserts. Bound.-Layer Meteor., 79, 265278, doi:10.1007/BF00119441.

    • Search Google Scholar
    • Export Citation
  • Han, B., , S. , , and Y. Ao, 2012: Development of the convective boundary layer capping with a thick neutral layer in Badanjilin: Observations and simulations. Adv. Atmos. Sci., 29, 177192, doi:10.1007/s00376-011-0207-4.

    • Search Google Scholar
    • Export Citation
  • Hecht, J., and Coauthors, 2004: An overview of observations of unstable layers during the Turbulent Oxygen Mixing Experiment (TOMEX). J. Geophys. Res., 109, D02S01, doi:10.1029/2002JD003123.

    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., , and A. Lammert, 2006: Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound.-Layer Meteor., 120, 181200, doi:10.1007/s10546-005-9035-3.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215–246, doi:10.1007/BF00120937.

  • Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235242, doi:10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holzworth, G. C., 1967: Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J. Appl. Meteor., 6, 10391044, doi:10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Korhonen, K., and Coauthors, 2014: Atmospheric boundary layer top height in South Africa: Measurements with lidar and radiosonde compared to three atmospheric models. Atmos. Chem. Phys., 14, 42634278, doi:10.5194/acp-14-4263-2014.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , G. A. Hajj, , J. T. Schofield, , R. P. Linfield, , and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102, 23 42923 465, doi:10.1029/97JD01569.

    • Search Google Scholar
    • Export Citation
  • Li, M., , Y. Dai, , Y. Ma, , L. Zhong, , and S. Lu, 2006: Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over Mount Qomolangma region (in Chinese). Plateau Meteor., 25, 807813.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , and W. Gao, 2007: Atmospheric boundary layer circulation on the eastern edge of the Tibetan Plateau, China, in summer. Arct. Antarct. Alp. Res., 39, 708713, doi:10.1657/1523-0430(07-504)[LI]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, H., , and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGrath-Spangler, E. L., , and A. S. Denning, 2013: Global seasonal variations of midday planetary boundary layer depth from CALIPSO space-borne lidar. J. Geophys. Res. Atmos., 118, 12261233, doi:10.1002/jgrd.50198.

    • Search Google Scholar
    • Export Citation
  • McGrath-Spangler, E. L., , and A. Molod, 2014: Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions. Atmos. Chem. Phys., 14, 67176727, doi:10.5194/acp-14-6717-2014.

    • Search Google Scholar
    • Export Citation
  • Nath, D., , M. Venkat Ratnam, , A. Patra, , B. Krishna Murthy, , B. Rao, , and S. Vijaya, 2010: Turbulence characteristics over tropical station Gadanki (13.5°N, 79.2°E) estimated using high-resolution GPS radiosonde data. J. Geophys. Res., 115, D07102, doi:10.1029/2009jd012347.

    • Search Google Scholar
    • Export Citation
  • Nyeki, S., and Coauthors, 2000: Convective boundary layer evolution to 4 km asl over high-alpine terrain: Airborne lidar observations in the Alps. Geophys. Res. Lett., 27, 689692, doi:10.1029/1999GL010928.

    • Search Google Scholar
    • Export Citation
  • Raman, S., and Coauthors, 1990: Structure of the Indian southwesterly pre-monsoon and monsoon boundary layers: Observations and numerical simulation. Atmos. Environ., 24A, 723734, doi:10.1016/0960-1686(90)90273-P.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., , and D. Zardi, 2007: On the boundary-layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948, doi:10.1002/qj.71.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Mejia, Z. M., , and S. A. Papuga, 2014: Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland. Water Resour. Res., 50, 306317, doi:10.1002/2013WR014135.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., , M. A. Friedl, , and W. P. Kustas, 2005: An empirical investigation of convective planetary boundary layer evolution and its relationship with the land surface. J. Appl. Meteor., 44, 917932, doi:10.1175/JAM2240.1.

    • Search Google Scholar
    • Export Citation
  • Seibert, P., , F. Beyrich, , S.-E. Gryning, , S. Joffre, , A. Rasmussen, , and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , C. O. Ao, , and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, doi:10.1029/2009jd013680.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Y. Zhang, , A. Beljaars, , J.-C. Golaz, , A. R. Jacobson, , and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, doi:10.1029/2012jd018143.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , S. Uppala, , D. Dee, , and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2006/14615-newsletter-no110-winter-200607.pdf.]

  • Škerlak, B., , M. Sprenger, , and H. Wernli, 2014: A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos. Chem. Phys., 14, 913917, doi:10.5194/acp-14-913-2014.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sun, F., , Y. Ma, , M. Li, , W. Ma, , H. Tian, , and S. Metzger, 2007: Boundary layer effects above a Himalayan valley near Mount Everest. Geophys. Res. Lett., 34, L08808, doi:10.1029/2007gl029484.

    • Search Google Scholar
    • Export Citation
  • Szintai, B., , P. Kaufmann, , and M. W. Rotach, 2009: Deriving turbulence characteristics from the COSMO numerical weather prediction model for dispersion applications. Adv. Sci. Res., 3, 7984, doi:10.5194/asr-3-79-2009.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., 1999: Structure and evolution of a severe squall line over the arid region in northwest China. Mon. Wea. Rev., 127, 13011309, doi:10.1175/1520-0493(1999)127<1301:SAEOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, S.-Y., , and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 2330, doi:10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Troen, I., , and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, doi:10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Ueno, K., , S. Sugimoto, , H. Tsutsui, , K. Taniguchi, , Z. Hu, , and S. Wu, 2012: Role of patchy snow cover on the planetary boundary layer structure during late winter observed in the central Tibetan Plateau. J. Meteor. Soc. Japan, 90C, 145155, doi:10.2151/jmsj.2012-C10.

    • Search Google Scholar
    • Export Citation
  • Villani, M. G., , A. Maurizi, , and F. Tampieri, 2005: Discussion and applications of slab models of the convective boundary layer based on turbulent kinetic energy budget parameterisations. Bound.-Layer Meteor., 114, 539556, doi:10.1007/s10546-004-1415-6.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D., , and A. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269, doi:10.1007/BF02430331.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., , and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, doi:10.1175/JCLI-D-12-00385.1.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., , J. Teixeira, , J. Wickert, , and S. A. Buehler, 2005: Using CHAMP radio occultation data to determine the top altitude of the planetary boundary layer. Geophys. Res. Lett., 32, L06815, doi:10.1029/2004GL022168.

    • Search Google Scholar
    • Export Citation
  • Westra, D., , G. Steeneveld, , and A. Holtslag, 2012: Some observational evidence for dry soils supporting enhanced relative humidity at the convective boundary layer top. J. Hydrometeor., 13, 13471358, doi:10.1175/JHM-D-11-0136.1.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., 1982: Toward parameterization of the stable boundary layer. J. Appl. Meteor., 21, 713, doi:10.1175/1520-0450(1982)021<0007:TPOTSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5–42.

  • Whiteman, C. D., , S. Zhong, , X. Bian, , J. Fast, , and J. C. Doran, 2000: Boundary layer evolution and regional-scale diurnal circulations over the and Mexican plateau. J. Geophys. Res., 105, 10 08110 102, doi:10.1029/2000JD900039.

    • Search Google Scholar
    • Export Citation
  • Wu, G., , Y. Liu, , B. He, , Q. Bao, , A. Duan, , and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , J. E. Janowiak, , P. A. Arkin, , and R. Adler, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214, doi:10.1175/2769.1.

    • Search Google Scholar
    • Export Citation
  • Xu, X., and Coauthors, 2002: A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. Sci. China, 45D, 577594, doi:10.1360/02yd9060.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and C. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305323, doi:10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , C. Li, , and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , T. Koike, , and D. Yang, 2003: Surface flux parameterization in the Tibetan Plateau. Bound.-Layer Meteor., 106, 245262, doi:10.1023/A:1021152407334.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , T. Koike, , H. Fujii, , T. Tamura, , X. Xu, , L. Bian, , and M. Zhou, 2004: The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: Observations and simulations. J. Meteor. Soc. Japan, 82, 17771792, doi:10.2151/jmsj.82.1777.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., , X. Xu, , and J. Wang, 2003: A dynamic study of Ekman characteristics by using 1998 SCSMEX and TIPEX boundary layer data. Adv. Atmos. Sci., 20, 349356, doi:10.1007/BF02690793.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., , J. Zhang, , J. Qiao, , and S. Wang, 2011: Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China. Sci. China, 54D, 15861594, doi:10.1007/s11430-011-4207-0.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., , H. Li, , and J. Zhao, 2012: Modification of the land surface energy balance relationship by introducing vertical sensible heat advection and soil heat storage over the Loess Plateau. Sci. China, 55D, 580589, doi:10.1007/s11430-011-4220-3.

    • Search Google Scholar
    • Export Citation
  • Zuo, H., , Y. Hu, , D. Li, , S. Lu, , and Y. Ma, 2005: Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau. Prog. Nat. Sci., 15, 239245, doi:10.1080/10020070512331342050.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 160 31
PDF Downloads 142 142 30

Reasons for the Extremely High-Ranging Planetary Boundary Layer over the Western Tibetan Plateau in Winter

View More View Less
  • 1 * Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands
  • 2 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • 3 Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
  • 4 Smith School of Enterprise and the Environment, University of Oxford, Oxford, United Kingdom
  • 5 Environmental Physics Laboratory, Science Faculty, Vigo University, Ourense, Spain
  • 6 ** Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
  • 7 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
  • 8 Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
© Get Permissions
Restricted access

Abstract

The planetary boundary layer (PBL) over the Tibetan Plateau (with a mean elevation about 4 km above sea level) reaches an unmatched height of 9515 m above sea level. The proximity of this height to the tropopause facilitates an exchange between the stratosphere and the boundary layer. However, the underlying mechanisms responsible for this unique PBL have remained uncertain. Here, the authors explore these mechanisms and their relative importance using measurements of the PBL, the associated surface fluxes, and single-column and regional numerical simulations, as well as global reanalysis data. Results indicate that the dry conditions of both ground soil and atmosphere in late winter cannot explain the special PBL alone. Rather, the results from a single-column model demonstrate the key influence of the stability of the free atmosphere upon the growth of extremely deep PBLs over the Tibetan Plateau. Simulations with the numerical weather prediction model Consortium for Small-Scale Modelling (COSMO) exhibit good correspondence with the observed mean PBL structure and realistic turbulent kinetic energy distributions throughout the PBL. Using ERA-Interim, the authors furthermore find that weak atmospheric stability and the resultant deep PBLs are associated with higher upper-level potential vorticity (PV) values, which in turn correspond to a more southerly jet position and higher wind speeds. Upper-level PV structures and jet position thus influence the PBL development over the Tibetan Plateau.

Corresponding author address: Xuelong Chen, Faculty of Geo-Information Science and Earth Observation, University of Twente, Hengelostraat 99, Enschede 7500AE, Netherlands. E-mail: x.chen@utwente.nl

This article is included in the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) special collection.

Abstract

The planetary boundary layer (PBL) over the Tibetan Plateau (with a mean elevation about 4 km above sea level) reaches an unmatched height of 9515 m above sea level. The proximity of this height to the tropopause facilitates an exchange between the stratosphere and the boundary layer. However, the underlying mechanisms responsible for this unique PBL have remained uncertain. Here, the authors explore these mechanisms and their relative importance using measurements of the PBL, the associated surface fluxes, and single-column and regional numerical simulations, as well as global reanalysis data. Results indicate that the dry conditions of both ground soil and atmosphere in late winter cannot explain the special PBL alone. Rather, the results from a single-column model demonstrate the key influence of the stability of the free atmosphere upon the growth of extremely deep PBLs over the Tibetan Plateau. Simulations with the numerical weather prediction model Consortium for Small-Scale Modelling (COSMO) exhibit good correspondence with the observed mean PBL structure and realistic turbulent kinetic energy distributions throughout the PBL. Using ERA-Interim, the authors furthermore find that weak atmospheric stability and the resultant deep PBLs are associated with higher upper-level potential vorticity (PV) values, which in turn correspond to a more southerly jet position and higher wind speeds. Upper-level PV structures and jet position thus influence the PBL development over the Tibetan Plateau.

Corresponding author address: Xuelong Chen, Faculty of Geo-Information Science and Earth Observation, University of Twente, Hengelostraat 99, Enschede 7500AE, Netherlands. E-mail: x.chen@utwente.nl

This article is included in the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) special collection.

Save