• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Archer, C. L., , and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.

  • Bals-Elsholz, T. M., , E. H. Atallah, , L. F. Bosart, , T. A. Wasula, , M. J. Cempa, , and A. R. Lupo, 2001: The wintertime Southern Hemisphere split jet: Structure, variability, and evolution. J. Climate, 14, 41914215, doi:10.1175/1520-0442(2001)014<4191:TWSHSJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and D. L. Hartmann, 2011: Rossby wave scales, propagation, and the variability of eddy-driven jets. J. Atmos. Sci., 68, 28932908, doi:10.1175/JAS-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Bordi, I., , K. Fraedrich, , F. Lunkeit, , and A. Sutera, 2007: Tropospheric double jets, meridional cells, and eddies: A case study and idealized simulations. Mon. Wea. Rev., 135, 31183133, doi:10.1175/MWR3464.1.

    • Search Google Scholar
    • Export Citation
  • Chan, C., , and R. Plumb, 2009: The response to stratospheric forcing and its dependence on the state of the troposphere. J. Atmos. Sci., 66, 21072115, doi:10.1175/2009JAS2937.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , I. M. Held, , and W. A. Robinson, 2007a: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , I. M. Held, , and W. A. Robinson, 2007b: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915, doi:10.1175/JAS3995.1.

    • Search Google Scholar
    • Export Citation
  • COESA, 1979: U.S. Standard Atmosphere, 1976. NOAA, 227 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539.pdf.]

  • Edmon, H. J., Jr., , B. J. Hoskins, , and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., , and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 51495163, doi:10.1175/JCLI4279.1.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A. N., , and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 (3), 123.

  • Gerber, E. P., , and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311, doi:10.1175/JAS4006.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , and G. K. Vallis, 2009: On the zonal structure of the NAO and annular modes. J. Atmos. Sci., 66, 332352, doi:10.1175/2008JAS2682.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., , and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-k., , and S. Lee, 2004: The wave–zonal mean flow interaction in the Southern Hemisphere. J. Atmos. Sci., 61, 10551067, doi:10.1175/1520-0469(2004)061<1055:TWMFII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, doi:10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , and H.-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 14901503, doi:10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monahan, A., , and J. Fyfe, 2008: On annular modes and zonal jets. J. Climate, 21, 19631978, doi:10.1175/2007JCLI1841.1.

  • O’Rourke, A. K., , and G. K. Vallis, 2013: Jet interaction and the influence of a minimum phase speed bound on the propagation of eddies. J. Atmos. Sci., 70, 26142628, doi:10.1175/JAS-D-12-0303.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 118-1–18-4, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Son, S., , and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62, 37413757, doi:10.1175/JAS3571.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Vallis, G., , and E. Gerber, 2008: Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index. Dyn. Atmos. Oceans, 44, 184212, doi:10.1016/j.dynatmoce.2007.04.003.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., , E. Gerber, , P. Kushner, , and B. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61, 264280, doi:10.1175/1520-0469(2004)061<0264:AMASDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, L. N., , S. Lee, , and S.-W. Son, 2007: Dynamics of the Southern Hemisphere spiral jet. J. Atmos. Sci., 64, 548563, doi:10.1175/JAS3939.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , A. Hannachi, , and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 29
PDF Downloads 66 66 21

Meridional Rossby Wave Generation and Propagation in the Maintenance of the Wintertime Tropospheric Double Jet

View More View Less
  • 1 University of Michigan, Ann Arbor, Michigan
  • 2 University of Exeter, Devon, United Kingdom
© Get Permissions
Restricted access

Abstract

The eddy-driven and subtropical jets are two dynamically distinct features of the midlatitude upper-troposphere circulation that are often merged into a single zonal wind maximum. Nonetheless, the potential for a distinct double-jet state in the atmosphere exists, particularly in the winter hemisphere, and presents a unique zonal-mean flow with two waveguides and an interjet region with a weakened potential vorticity gradient upon which Rossby waves may be generated, propagate, reflect, and break.

The authors investigate the interaction of two groups of atmospheric waves—those with wavelengths longer and shorter than the deformation radius—within a double-jet mean flow in an idealized atmospheric model. Patterns of eddy momentum flux convergence for long and short waves differ greatly. Short waves behave following classic baroclinic instability theory such that their eddy momentum flux convergence is centered at the eddy-driven jet core. Long waves, on the other hand, reveal strong eddy momentum flux convergence along the poleward flank of the eddy-driven jet and within the interjet region. This pattern is enhanced when two jets are present in the zonal-mean zonal wind.

Corresponding author address: Amanda O’Rourke, University of Michigan, Room 2534, C.C. Little Building, 110 N. University Ave., Ann Arbor, MI 48109-1005. E-mail: amandao@princeton.edu

Abstract

The eddy-driven and subtropical jets are two dynamically distinct features of the midlatitude upper-troposphere circulation that are often merged into a single zonal wind maximum. Nonetheless, the potential for a distinct double-jet state in the atmosphere exists, particularly in the winter hemisphere, and presents a unique zonal-mean flow with two waveguides and an interjet region with a weakened potential vorticity gradient upon which Rossby waves may be generated, propagate, reflect, and break.

The authors investigate the interaction of two groups of atmospheric waves—those with wavelengths longer and shorter than the deformation radius—within a double-jet mean flow in an idealized atmospheric model. Patterns of eddy momentum flux convergence for long and short waves differ greatly. Short waves behave following classic baroclinic instability theory such that their eddy momentum flux convergence is centered at the eddy-driven jet core. Long waves, on the other hand, reveal strong eddy momentum flux convergence along the poleward flank of the eddy-driven jet and within the interjet region. This pattern is enhanced when two jets are present in the zonal-mean zonal wind.

Corresponding author address: Amanda O’Rourke, University of Michigan, Room 2534, C.C. Little Building, 110 N. University Ave., Ann Arbor, MI 48109-1005. E-mail: amandao@princeton.edu
Save