• Avramov, A., , and J. Y. Harrington, 2010: Influence of parameterized ice habit on simulated mixed phase Arctic clouds. J. Geophys. Res., 115, D03205, doi:10.1029/2009JD012108.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., , and J. Hallett, 2004: Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514544, doi:10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , H. Chepfer, , G. B. Raga, , and G. L. Kok, 2005: The shapes of very small cirrus particles derived from in situ measurements. Geophys. Res. Lett., 32, L01806, doi:10.1029/2004GL021300.

    • Search Google Scholar
    • Export Citation
  • Böhm, J. P., 1992: A general hydrodynamic theory for mixed-phase microphysics. Part III: Riming and aggregation. Atmos. Res., 28, 103123, doi:10.1016/0169-8095(92)90023-4.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., 1965: Elements of Cloud Physics.The University of Chicago Press, 191 pp.

  • Chen, J.-P., , and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061221, doi:10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., , I.-C. Tsai, , and Y.-C. Lin, 2013: A statistical–numerical aerosol parameterization scheme. Atmos. Chem. Phys., 13, 10 48310 504, doi:10.5194/acp-13-10483-2013.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., , K.-T. Lee, , and P. Yang, 2002: Parameterization of shortwave cloud optical properties for a mixture of ice particle habits for use in atmospheric models. J. Geophys. Res., 107, 4600, doi:10.1029/2002JD002061.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., , and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 19952006, doi:10.1175/1520-0469(1976)033<1995:TSOIPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., , and B. J. Mason, 1958: The influence of temperature and supersaturation on the habit of ice crystals grown from the vapor. Proc. Roy. Soc. London, A247, 440453, doi:10.1098/rspa.1958.0199.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., , M. P. Meyers, , R. L. Walko, , and W. R. Cotton, 1995: Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52, 43444366, doi:10.1175/1520-0469(1995)052<4344:POICCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., , K. Sulia, , and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, doi:10.1175/JAS-D-12-040.1.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., , K. Sulia, , and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, doi:10.1175/JAS-D-12-0152.1.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., , and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 22102237, doi:10.1175/JAS3963.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and R. G. Knollenberg, 1972: Properties of cirrus generating cells. J. Atmos. Sci., 29, 13581366, doi:10.1175/1520-0469(1972)029<1358:POCGC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , and C. Twohy, 2007a: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds: Part I: Temperature dependence. J. Atmos. Sci., 64, 10471067, doi:10.1175/JAS3890.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , G.-J. van Zadelhoff, , D. Donovan, , F. Fabry, , R. Hogan, , and A. Ilingworth, 2007b: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part II: Evaluation and parameterizations of ensemble ice particle sedimentation velocities. J. Atmos. Sci., 64, 10681088, doi:10.1175/JAS3900.1.

    • Search Google Scholar
    • Export Citation
  • Higuchi, K., , and T. Yoshida, 1967: Crystallographic orientation of frozen droplets on ice surfaces. Phys. Snow Ice, 1, 79–93.

  • Jayaweera, K. O. L. F., , and T. Ohtake, 1974: Properties of columnar ice crystals precipitating front layer clouds. J. Atmos. Sci., 31, 280286, doi:10.1175/1520-0469(1974)031<0280:POCICP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ji, W., , and P.-K. Wang, 1999: Ventilation coefficients of falling ice crystals at low–intermediate Reynolds numbers. J. Atmos. Sci., 56, 829836, doi:10.1175/1520-0469(1999)056<0829:VCFFIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations.Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Kinne, S., , and K. N. Liou, 1989: The effects of the nonsphericity and size distribution of ice crystals on the radiative properties of cirrus clouds. Atmos. Res., 24, 273284, doi:10.1016/0169-8095(89)90049-5.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., 1961: The growth of snow crystals at low supersaturation. Philos. Mag., 6, 13631370, doi:10.1080/14786436108241231.

  • Lamb, D., , and J.-P. Chen, 1995: An expanded parameterization of the growth of ice crystals by vapor deposition. Preprints, Conf. Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 389392.

  • Lin, Y. L., , R. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, H.-C., , P. K. Wang, , and R. E. Schlesinger, 2003: A numerical study of cirrus clouds. Part I: Model description. J. Atmos. Sci., 60, 10751084, doi:10.1175/1520-0469(2003)60<1075:ANSOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magono, C., , and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., , C. L. Ziegler, , and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, doi:10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and H. Morrison, 2013: Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci., 70, 410429, doi:10.1175/JAS-D-12-0204.1.

    • Search Google Scholar
    • Export Citation
  • Miller, T. L., , and K. C. Young, 1979: A numerical simulation of ice crystal growth from the vapor phase. J. Atmos. Sci., 36, 458469, doi:10.1175/1520-0469(1979)036<0458:ANSOIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Misumi, R., and Coauthors, 2010: Microphysical structure of a developing convective snow cloud simulated by an improved version of the multi-dimensional bin model. Atmos. Sci. Lett., 11, 186191, doi:10.1002/asl.268.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, doi:10.1175/JAS3413.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , J. A. Curry, , and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Nakaya, U., 1954: Snow Crystals: Natural and Artificial.Harvard University Press, 510 pp.

  • Nelson, J., , and C. Knight, 1998: Snow crystal habit changes explained by layer nucleation. J. Atmos. Sci., 55, 14521465, doi:10.1175/1520-0469(1998)055<1452:SCHCEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ono, A., 1970: Growth mode of ice crystals in natural clouds. J. Atmos. Sci., 27, 649658, doi:10.1175/1520-0469(1970)027<0649:GMOICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.

  • Reichardt, J., , S. Reichardt, , M. Hess, , and T. J. McGee, 2002: Correlations among the optical properties of cirrus-cloud particles: Microphysical interpretation. J. Geophys. Res., 107, 4562, doi:10.1029/2002JD002589.

    • Search Google Scholar
    • Export Citation
  • Shaw, D., , and B. J. Mason, 1955: The growth of ice crystals from the vapor. London, Edinburgh, Dublin Philos. Mag. J. Sci., 46, 249262, doi:10.1080/14786440308521075.

    • Search Google Scholar
    • Export Citation
  • Sheridan, L. M., , J. Y. Harrington, , D. Lamb, , and K. Sulia, 2009: Influence of ice crystal aspect ratio on the evolution of ice size spectra during vapor depositional growth. J. Atmos. Sci., 66, 37323743, doi:10.1175/2009JAS3113.1.

    • Search Google Scholar
    • Export Citation
  • Snow, C., 1954: Formulas for computing capacitance and inductance. National Bureau of Standards Circular 544, 69 pp.

  • Straka, J. M., , and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44, 445466, doi:10.1175/JAM2211.1.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., , and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, doi:10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , and J. S. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Thompson, G., , P. R. Field, , R. M. Rasmussen, , and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Um, J., , and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 31593171, doi:10.5194/acp-11-3159-2011.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., , and W. Ji, 2000: Collision efficiencies of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci., 57, 10011009, doi:10.1175/1520-0469(2000)057<1001:CEOICA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., , and A. J. Heymsfield, 2011: Ice crystals growing from vapor in supercooled clouds between −2.5° and −22°C: Testing current parameterization methods using laboratory data. J. Atmos. Sci., 68, 24162429, doi:10.1175/JAS-D-11-017.1.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J., and Coauthors, 2004: Anatomy of cirrus clouds: Results from the Emerald airborne campaigns. Geophys. Res. Lett., 31, L24102, doi:10.1029/2004GL021201.

    • Search Google Scholar
    • Export Citation
  • Wulff, G., 1901: Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflachen. Zeitschr. Krystallogr. Mineral., 34, 449530.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , and Q. Fu, 2009: Dependence of ice crystal optical properties on particle aspect ratio. J. Quant. Spectrosc. Radiat. Transfer, 72, 403417, doi:10.1016/j.jqsrt.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , and J. Y. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor diffusion. J. Atmos. Sci., 71, 372390, doi:10.1175/JAS-D-13-0103.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, S., , X. Guo, , G. Lu, , and L. Guo, 2015: Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in northern China. J. Atmos. Sci., 72, 20112032, doi:10.1175/JAS-D-14-0194.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 12
PDF Downloads 27 27 7

Triple-Moment Modal Parameterization for the Adaptive Growth Habit of Pristine Ice Crystals

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
© Get Permissions
Restricted access

Abstract

A three-moment modal parameterization scheme was developed for describing variations in the shape of cloud ice crystals during growth by vapor deposition. The shape of ice crystals is represented using the volume-weighted aspect ratio, while the size spectrum of the crystal population is described using a three-parameter gamma function. Verified with binned spectral calculations, the proposed modal scheme performed quite accurately in the evolution of the mass and shape of cloud ice crystals growing under idealized conditions. The associated error is within 1% in mass after 1000 s of growth under water saturation. When the ventilation effect is taken into account, the error remains within 5%. Error with regard to the bulk aspect ratio is generally about 3%. A failure to take into account the ice crystal shape led to a 45% underestimation in mass growth. Using only two moments to describe the gamma distribution led to a 37% underestimation in mass and 28% underestimation in the bulk aspect ratio of the ice crystals. The proposed scheme is able to capture the shape memory effect and the gradual adaptation of ice crystal aspect ratios to a new growth habit regime.

Corresponding author address: Jen-Ping Chen, Department of Atmospheric Sciences, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan. E-mail: jpchen@as.ntu.edu.tw

Abstract

A three-moment modal parameterization scheme was developed for describing variations in the shape of cloud ice crystals during growth by vapor deposition. The shape of ice crystals is represented using the volume-weighted aspect ratio, while the size spectrum of the crystal population is described using a three-parameter gamma function. Verified with binned spectral calculations, the proposed modal scheme performed quite accurately in the evolution of the mass and shape of cloud ice crystals growing under idealized conditions. The associated error is within 1% in mass after 1000 s of growth under water saturation. When the ventilation effect is taken into account, the error remains within 5%. Error with regard to the bulk aspect ratio is generally about 3%. A failure to take into account the ice crystal shape led to a 45% underestimation in mass growth. Using only two moments to describe the gamma distribution led to a 37% underestimation in mass and 28% underestimation in the bulk aspect ratio of the ice crystals. The proposed scheme is able to capture the shape memory effect and the gradual adaptation of ice crystal aspect ratios to a new growth habit regime.

Corresponding author address: Jen-Ping Chen, Department of Atmospheric Sciences, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan. E-mail: jpchen@as.ntu.edu.tw
Save