The Relationship between Equatorial Mixed Rossby–Gravity and Eastward Inertio-Gravity Waves. Part I

George N. Kiladis Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
,
Juliana Dias CIRES, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Juliana Dias in
Current site
Google Scholar
PubMed
Close
, and
Maria Gehne CIRES, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Maria Gehne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relationship between n = 0 mixed Rossby–gravity waves (MRGs) and eastward inertio-gravity waves (EIGs) from Matsuno’s shallow-water theory on an equatorial beta plane is studied using statistics of satellite brightness temperature Tb and dynamical fields from ERA-Interim data. Unlike other observed convectively coupled equatorial waves, which have spectral signals well separated into eastward and westward modes, there is a continuum of MRG–EIG power standing above the background that peaks near wavenumber 0. This continuum is also present in the signals of dry stratospheric MRGs. While hundreds of papers have been written on MRGs, very little work on EIGs has appeared in the literature to date. The authors attribute this to the fact that EIG circulations are much weaker than those of MRGs for a given amount of divergence, making them more difficult to observe even though they strongly modulate convection.

Empirical orthogonal function (EOF) and cross-spectral analysis of 2–6-day-filtered Tb isolate zonally standing modes of synoptic-scale convection originally identified by Wallace in 1971. These display antisymmetric Tb signals about the equator that propagate poleward with a period of around 4 days, along with westward-propagating MRG-like circulations that move through the Tb patterns. Further analysis here and in Part II shows that these signatures are not artifacts of the EOF approach but result from a mixture of MRG or EIG modes occurring either in isolation or at the same time.

Corresponding author address: George N. Kiladis, Physical Sciences Division, ESRL, 325 Broadway St., Boulder, CO 80305-3328. E-mail: george.kiladis@noaa.gov

Abstract

The relationship between n = 0 mixed Rossby–gravity waves (MRGs) and eastward inertio-gravity waves (EIGs) from Matsuno’s shallow-water theory on an equatorial beta plane is studied using statistics of satellite brightness temperature Tb and dynamical fields from ERA-Interim data. Unlike other observed convectively coupled equatorial waves, which have spectral signals well separated into eastward and westward modes, there is a continuum of MRG–EIG power standing above the background that peaks near wavenumber 0. This continuum is also present in the signals of dry stratospheric MRGs. While hundreds of papers have been written on MRGs, very little work on EIGs has appeared in the literature to date. The authors attribute this to the fact that EIG circulations are much weaker than those of MRGs for a given amount of divergence, making them more difficult to observe even though they strongly modulate convection.

Empirical orthogonal function (EOF) and cross-spectral analysis of 2–6-day-filtered Tb isolate zonally standing modes of synoptic-scale convection originally identified by Wallace in 1971. These display antisymmetric Tb signals about the equator that propagate poleward with a period of around 4 days, along with westward-propagating MRG-like circulations that move through the Tb patterns. Further analysis here and in Part II shows that these signatures are not artifacts of the EOF approach but result from a mixture of MRG or EIG modes occurring either in isolation or at the same time.

Corresponding author address: George N. Kiladis, Physical Sciences Division, ESRL, 325 Broadway St., Boulder, CO 80305-3328. E-mail: george.kiladis@noaa.gov
Save
  • Aiyyer, A. R., and J. Molinari, 2003: Evolution of mixed Rossby–gravity waves in idealized MJO environments. J. Atmos. Sci., 60, 28372855, doi:10.1175/1520-0469(2003)060<2837:EOMRWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and D. A. Ortland, 2010: Equatorial waves in High Resolution Dynamics Limb Sounder (HIRDLS) data. J. Geophys. Res., 115, D24111, doi:10.1029/2010JD014782.

    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., T. Tsuda, and Y. Kawatani, 2008a: COSMIC GPS observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model. Geophys. Res. Lett., 35, L10808, doi:10.1029/2008GL033174.

    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., T. Tsuda, Y. Kawatani, and M. Takahashi, 2008b: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113, D24115, doi:10.1029/2008JD010039.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, doi:10.1029/1999RG000073.

  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51, 37913806, doi:10.1175/1520-0469(1994)051<3791:EWADFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biello, J., and A. J. Majda, 2004: Boundary layer dissipation and the nonlinear interaction of equatorial baroclinic and barotropic Rossby waves. Geophys. Astrophys. Fluid Dyn., 98, 85127, doi:10.1080/03091920410001686712.

    • Search Google Scholar
    • Export Citation
  • Blackman, R. B., and J. Tukey, 1958: The Measurement of Power Spectra.Dover, 190 pp.

  • Blandford, R., 1965: Mixed gravity-Rossby waves in the ocean. Deep-Sea Res. Oceanogr. Abstr., 13, 941961, doi:10.1016/0011-7471(76)90912-8.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., 1970: Westward propagating cloud patterns in the tropical Pacific as seen from composite satellite photographs. J. Atmos. Sci., 27, 133138, doi:10.1175/1520-0469(1970)027<0133:WPCPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., 1973: A dynamical model of the Intertropical Convergence Zone. J. Atmos. Sci., 30, 190212, doi:10.1175/1520-0469(1973)030<0190:ADMOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., and C. R. Miller, 1977: Comparison of easterly waves in the tropical Pacific during two contrasting periods of sea surface temperature anomalies. J. Atmos. Sci., 34, 615628, doi:10.1175/1520-0469(1977)034<0615:COEWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2009: Interannual variations in mixed Rossby–gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Climate, 22, 535549, doi:10.1175/2008JCLI2221.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2015: A study of CINDY/DYNAMO MJO suppressed phase. J. Atmos. Sci., 72, 37553779, doi:10.1175/JAS-D-13-0348.1.

    • Search Google Scholar
    • Export Citation
  • Chung, C. T. Y., and S. B. Power, 2015: Modelled rainfall response to strong El Niño sea surface temperature anomalies in the tropical Pacific. J. Climate, 28, 31333151, doi:10.1175/JCLI-D-14-00610.1.

    • Search Google Scholar
    • Export Citation
  • Dias, J., and G. N. Kiladis, 2014: Influence of the basic state zonal flow on convectively coupled equatorial waves. Geophys. Res. Lett., 41, 69046913, doi:10.1002/2014GL061476.

    • Search Google Scholar
    • Export Citation
  • Dias, J., and G. N. Kiladis, 2016: The relationship between equatorial mixed Rossby–gravity and eastward inertio-gravity waves. Part II. J. Atmos. Sci., 73, 21472163, doi:10.1175/JAS-D-15-0231.1.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 21832196, doi:10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1991: Intensity variation and coherence of 3–6 day equatorial waves. Geophys. Res. Lett., 18, 14691472, doi:10.1029/91GL01780.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1993: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Vertical structure and interannual variability. J. Atmos. Sci., 50, 32923307, doi:10.1175/1520-0469(1993)050<3292:OODMWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, doi:10.1029/96JD02999.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and M. P. Baldwin, 1995: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Horizontal structure and propagation. J. Atmos. Sci., 52, 15851601, doi:10.1175/1520-0469(1995)052<1585:OODMWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. Krebsbach, M. G. Mlynczak, and J. M. Russell III, 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8, 845869, doi:10.5194/acp-8-845-2008.

    • Search Google Scholar
    • Export Citation
  • Ferguson, J., B. Khouider, and M. Namazi, 2009: Two-way interactions between equatorially-trapped waves and the barotropic flow. Chin. Ann. Math., 30B, 539568, doi:10.1007/s11401-009-0102-9.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, doi:10.1175/MWR3204.1.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Gehne, M., and R. Kleeman, 2012: Spectral analysis of tropical atmospheric dynamical variables using a linear shallow-water modal decomposition. J. Atmos. Sci., 69, 23002316, doi:10.1175/JAS-D-10-05008.1.

    • Search Google Scholar
    • Export Citation
  • Han, Y., and B. Khouider, 2010: Convectively coupled waves in a sheared environment. J. Atmos. Sci., 67, 29132942, doi:10.1175/2010JAS3335.1.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1970: A theory of large-scale equatorial waves generated by condensation heat and accelerating the zonal wind. J. Meteor. Soc. Japan., 48, 140160.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1991: The structure and annual variation of antisymmetric fluctuations of tropical convection and their association with Rossby–gravity waves. J. Atmos. Sci., 48, 21272140, doi:10.1175/1520-0469(1991)048<2127:TSAAVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948, doi:10.1175/2008JAS2675.1.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., D. W. Chappell, and G. J. Robinson, 2000: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J. Atmos. Oceanic Technol., 17, 12961312, doi:10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1972: Waves in the equatorial stratosphere generated by tropospheric heat sources. J. Atmos. Sci., 29, 368375, doi:10.1175/1520-0469(1972)029<0368:WITESG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., J. M. Wallace, and J. A. Young, 1971: On boundary layer dynamics and the ITCZ. J. Atmos. Sci., 28, 275280, doi:10.1175/1520-0469(1971)028<0275:OBLDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., 2013: Modulation of seasonal precipitation over the tropical western/central Pacific by convectively coupled mixed Rossby–gravity waves. J. Atmos. Sci., 70, 600606, doi:10.1175/JAS-D-12-0283.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and G.-Y. Yang, 2000: The equatorial response to higher-latitude forcing. J. Atmos. Sci., 57, 11971213, doi:10.1175/1520-0469(2000)057<1197:TERTHL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and R. Huang, 2011: Climatology and interannual variability of convectively coupled equatorial waves activity. J. Climate, 24, 44514465, doi:10.1175/2011JCLI4021.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., and M. Ghil, 1988: The generation mechanism of mixed Rossby-gravity waves in the equatorial troposphere. J. Atmos. Sci., 45, 585604, doi:10.1175/1520-0469(1988)045<0585:TGMOMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 2003: On the nonhydrostatic atmospheric models with inclusion of the horizontal component of the Earth’s angular velocity. J. Meteor. Soc. Japan, 81, 935950, doi:10.2151/jmsj.81.935.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., and P. L. Silva Dias, 1986: Response of planetary waves to stationary tropical heating in a global atmosphere with meridional and vertical shear. J. Atmos. Sci., 43, 18931912, doi:10.1175/1520-0469(1986)043<1893:ROPWTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., S. Watanabe, K. Sato, T. J. Dunkerton, S. Miyahara, and M. Takahashi, 2010: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980, doi:10.1175/2009JAS3222.1.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2014: Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Mon. Wea. Rev., 142, 13261343, doi:10.1175/MWR-D-13-00159.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., A. J. Majda, and S. N. Stechmann, 2013: Climate science in the tropics: Waves, vortices and PDEs. Nonlinearity, 26, R1R68, doi:10.1088/0951-7715/26/1/R1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55, 321339, doi:10.1175/1520-0469(1998)055<0321:OORWLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992a: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 19001923, doi:10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992b: Extratropical forcing of tropical Pacific convection during northern winter. Mon. Wea. Rev., 120, 19241939, doi:10.1175/1520-0493(1992)120<1924:EFOTPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and M. Wheeler, 1995: Horizontal and vertical structure of observed tropospheric equatorial Rossby waves. J. Geophys. Res., 100, 22 98122 997, doi:10.1029/95JD02415.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1997: Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Mon. Wea. Rev., 125, 19972013, doi:10.1175/1520-0493(1997)125<1997:HSASOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, doi:10.1175/MWR-D-13-00301.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., J.-H. Chen, R. T. Williams, and C.-P. Chang, 2001: Rossby waves in zonally opposing mean flow: Behavior in Northwest Pacific summer monsoon. J. Atmos. Sci., 58, 10351050, doi:10.1175/1520-0469(2001)058<1035:RWIZOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479, doi:10.1175/1520-0469(1990)047<1463:SSDNTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lim, H., and C. P. Chang, 1981: A theory for midlatitude forcing of tropical motions during winter monsoons. J. Atmos. Sci., 38, 23772392, doi:10.1175/1520-0469(1981)038<2377:ATFMFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, doi:10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., J. Kuttippurath, and F. Vial, 2009: A climatology of the gravest waves in the equatorial lower and middle stratosphere: Method and results for the ERA-40 Re-Analysis and the LMDz GCM. J. Atmos. Sci., 66, 13271346, doi:10.1175/2008JAS2880.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 2007: Large-scale, free Rossby waves in the atmosphere—An update. Tellus, 59A, doi:10.3402/tellusa.v59i5.15155.

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magaña, V., and M. Yanai, 1995: Mixed Rossby–gravity waves triggered by lateral forcing. J. Atmos. Sci., 52, 14731486, doi:10.1175/1520-0469(1995)052<1473:MRWTBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T., 1967: Large-scale disturbances in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 45, 391408.

  • Maruyama, T., 1968: Upward transport of westerly momentum due to large-scale disturbances in the lower stratosphere. J. Meteor. Soc. Japan, 46, 404417.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T., 1991: Annual and QBO-synchronized variations of lower-stratospheric equatorial wave activity over Singapore during 1961-1989. J. Meteor. Soc. Japan, 69, 219232.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T., and M. Yanai, 1967: Evidence of large scale wave disturbances in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 45, 196199.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Matthews, A. J., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian Oscillation. Mon. Wea. Rev., 127, 661677, doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maury, P., and F. Lott, 2014: On the presence of equatorial waves in the lower stratosphere of a general circulation model. Atmos. Chem. Phys., 14, 18691880, doi:10.5194/acp-14-1869-2014.

    • Search Google Scholar
    • Export Citation
  • Mayr, H. G., J. G. Mengel, E. R. Talaat, H. S. Porter, and K. L. Chan, 2003: Planetary-scale inertio gravity waves in the mesosphere. Geophys. Res. Lett., 30, 2228, doi:10.1029/2003GL018376.

    • Search Google Scholar
    • Export Citation
  • Mayr, H. G., J. G. Mengel, E. R. Talaat, H. S. Porter, and K. L. Chan, 2004: Properties of internal planetary-scale inertio gravity waves in the mesosphere. Ann. Geophys., 22, 34213435, doi:10.5194/angeo-22-3421-2004.

    • Search Google Scholar
    • Export Citation
  • Molinari, J. D., K. Lombardo, and D. Vollaro, 2007: Tropical cyclogenesis within an equatorial Rossby wave packet. J. Atmos. Sci., 64, 13011317, doi:10.1175/JAS3902.1.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, M. H. P. Ambaum, D. B. Stephenson, and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, doi:10.1175/2009JCLI3062.1.

    • Search Google Scholar
    • Export Citation
  • Muraleedharan, P. M., S. Prasanna Kumar, K. Mohana Kumar, S. Sijikumar, K. U. Sivakumar, and T. Mathew, 2015: Observational evidence of mixed Rossby gravity waves at the central equatorial Indian Ocean. Meteor. Atmos. Phys., 127, 407417, doi:10.1007/s00703-015-0376-2.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361, doi:10.1175/JCLI-D-11-00665.1.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1970: Statistical study of tropospheric wave disturbances in the tropical Pacific region. J. Meteor. Soc. Japan, 48, 4760.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1995: Characteristics of 4-to-20-day-period disturbances observed in the equatorial Pacific during the TOGA COARE IOP. J. Meteor. Soc. Japan, 73, 353377.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 1992: Upper tropospheric equatorial waves in ECMWF analyses. Quart. J. Roy. Meteor. Soc., 118, 365394, doi:10.1002/qj.49711850409.

    • Search Google Scholar
    • Export Citation
  • Rattray, M. J., 1965: Time-dependent motion in an ocean, a unified two-layer, beta-plane approximation. Studies on Oceanography, Hidaka Memorial Volume, K. Yoshida, Ed., Department of Oceanography, University of Washington, 19–29.

  • Rattray, M. J., and R. L. Charnell, 1966: Quasigeostrophic free oscillations in enclosed basins. J. Mar. Res., 24, 82103.

  • Raupp, C. F. M., and P. L. Silva Dias, 2005: Excitation mechanism of mixed Rossby–gravity waves in the equatorial atmosphere: Role of the nonlinear interactions among equatorial waves. J. Atmos. Sci., 62, 14461462, doi:10.1175/JAS3412.1.

    • Search Google Scholar
    • Export Citation
  • Rosenthal, S. L., 1965: Some preliminary theoretical considerations of tropospheric wave motions in equatorial latitudes. Mon. Wea. Rev., 93, 605612, doi:10.1175/1520-0493(1965)093<0605:SPTCOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and M. A. Janiga, 2012: Analysis of vertically propagating convectively coupled equatorial waves using observations and a non-hydrostatic Boussinesq model on the equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 138, 10041017, doi:10.1002/qj.983.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., J. Molinari, and A. Aiyyer, 2012: A global view of equatorial waves and tropical cyclogenesis. Mon. Wea. Rev., 140, 774788, doi:10.1175/MWR-D-11-00110.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 31063127, doi:10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003a: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526543, doi:10.1175/1520-0469(2003)060<0526:EFOCCK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003b: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131, 945960, doi:10.1175/1520-0493(2003)131<0945:IBTBSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433449.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3-5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., G. N. Kiladis, and V. Magaña, 2016: Michio Yanai and tropical waves. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to the Late Professor Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-15-0019.1, in press.

  • Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006a: Equatorial waves in the lower stratosphere. I: A novel detection method. Quart. J. Roy. Meteor. Soc., 132, 177194, doi:10.1256/qj.04.152.

    • Search Google Scholar
    • Export Citation
  • Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006b: Equatorial waves in the lower stratosphere. II: Annual and interannual variability. Quart. J. Roy. Meteor. Soc., 132, 195212, doi:10.1256/qj.04.153.

    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., and P. J. Webster, 1994: Horizontal and vertical structure of cross-equatorial wave propagation. J. Atmos. Sci., 51, 14171430, doi:10.1175/1520-0469(1994)051<1417:HAVSOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1971: Spectral studies of tropospheric wave disturbances in the tropical western Pacific. J. Appl. Meteor., 9, 557612.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and C. P. Chang, 1969: Spectrum analysis of large-scale wave disturbances in the tropical lower troposphere. J. Atmos. Sci., 26, 10101025, doi:10.1175/1520-0469(1969)026<1010:SAOLSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and L. A. Chang, 1972: On the application of satellite data on cloud brightness to the study of tropical wave disturbances. J. Atmos. Sci., 29, 14001403, doi:10.1175/1520-0469(1972)029<1400:OTAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 34243437, doi:10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733, doi:10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, doi:10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1963: Preliminary survey of large-scale disturbances over the tropical Pacific region. Geofis. Int., 3, 7384.

  • Yanai, M., and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteor. Soc. Japan, 44, 291294.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and Y. Hayashi, 1969: Large-scale equatorial waves penetrating from the upper troposphere into the lower stratosphere. J. Meteor. Soc. Japan, 47, 167182.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and M. Murakami, 1970a: A further study of tropical wave disturbances by the use of spectrum analysis. J. Meteor. Soc. Japan, 48, 185197.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and M. Murakami, 1970b: Spectrum analysis of symmetric and antisymmetric equatorial waves. J. Meteor. Soc. Japan, 48, 331347.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and M.-M. Lu, 1983: Equatorially trapped waves at the 200 mb level and their association with meridional convergence of wave energy flux. J. Atmos. Sci., 40, 27852803, doi:10.1175/1520-0469(1983)040<2785:ETWATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., T. Maruyama, T. Nitta, and Y. Hayashi, 1968: Power spectra of large-scale disturbances over the tropical Pacific. J. Meteor. Soc. Japan, 46, 291294.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and B. Hoskins, 2013: ENSO impact on Kelvin waves and associated tropical convection. J. Atmos. Sci., 70, 35133532, doi:10.1175/JAS-D-13-081.1.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654, doi:10.1175/1520-0469(2003)060<1637:CCEWAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2007a: Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. J. Atmos. Sci., 64, 34063423, doi:10.1175/JAS4017.1.

    • Search Google Scholar
    • Export Citation