Ice Nucleating Particle Measurements at 241 K during Winter Months at 3580 m MSL in the Swiss Alps

Yvonne Boose * Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Yvonne Boose in
Current site
Google Scholar
PubMed
Close
,
Zamin A. Kanji * Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Zamin A. Kanji in
Current site
Google Scholar
PubMed
Close
,
Monika Kohn * Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Monika Kohn in
Current site
Google Scholar
PubMed
Close
,
Berko Sierau * Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Berko Sierau in
Current site
Google Scholar
PubMed
Close
,
Assaf Zipori Institute of Earth Sciences, Hebrew University, Jerusalem, Israel

Search for other papers by Assaf Zipori in
Current site
Google Scholar
PubMed
Close
,
Ian Crawford Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Ian Crawford in
Current site
Google Scholar
PubMed
Close
,
Gary Lloyd Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by Gary Lloyd in
Current site
Google Scholar
PubMed
Close
,
Nicolas Bukowiecki Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Search for other papers by Nicolas Bukowiecki in
Current site
Google Scholar
PubMed
Close
,
Erik Herrmann Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Search for other papers by Erik Herrmann in
Current site
Google Scholar
PubMed
Close
,
Piotr Kupiszewski Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Search for other papers by Piotr Kupiszewski in
Current site
Google Scholar
PubMed
Close
,
Martin Steinbacher Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

Search for other papers by Martin Steinbacher in
Current site
Google Scholar
PubMed
Close
, and
Ulrike Lohmann * Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Ulrike Lohmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ice nucleating particle (INP) concentrations were measured at the High Altitude Research Station Jungfraujoch, Switzerland, 3580 m above mean sea level during the winter months of 2012, 2013, and 2014 with the Portable Ice Nucleation Chamber (PINC). During the measurement periods, the research station was mostly located in the free troposphere, and particle concentrations were low. At temperature T = 241 K, INP concentrations in the deposition regime [relative humidity with respect to water (RHw) = 93%] were, on average, below 1.09 per standard liter of air (stdL−1; normalized to 1013 hPa and 273 K) and 4.7 ± 8.3 stdL−1 in the condensation regime (RHw = 103%) in winter 2014. The deployment of a particle concentrator upstream of PINC decreased the limit of detection (LOD) by a factor of 3 compared to earlier measurements. The authors discuss a potential bias of INP measurements toward higher concentrations if data below the LOD are disregarded and thus recommend reporting subLOD data in future publications. Saharan dust and more local, basaltic dust mixed with marine aerosol were found to constitute the dominant INP type. Bioaerosols were not observed to play a role in ice nucleation during winter because of their low concentration during this period. The INP concentrations at Jungfraujoch are low in comparison to other studies of INP at this temperature. This represents the first study addressing interannual variations of INP concentrations during winter at one location.

Corresponding author address: Zamin A. Kanji, Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstr. 16, CH-8092 Zürich, Switzerland. E-mail: zamin.kanji@env.ethz.ch; yvonne.boose@env.ethz.ch

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Abstract

Ice nucleating particle (INP) concentrations were measured at the High Altitude Research Station Jungfraujoch, Switzerland, 3580 m above mean sea level during the winter months of 2012, 2013, and 2014 with the Portable Ice Nucleation Chamber (PINC). During the measurement periods, the research station was mostly located in the free troposphere, and particle concentrations were low. At temperature T = 241 K, INP concentrations in the deposition regime [relative humidity with respect to water (RHw) = 93%] were, on average, below 1.09 per standard liter of air (stdL−1; normalized to 1013 hPa and 273 K) and 4.7 ± 8.3 stdL−1 in the condensation regime (RHw = 103%) in winter 2014. The deployment of a particle concentrator upstream of PINC decreased the limit of detection (LOD) by a factor of 3 compared to earlier measurements. The authors discuss a potential bias of INP measurements toward higher concentrations if data below the LOD are disregarded and thus recommend reporting subLOD data in future publications. Saharan dust and more local, basaltic dust mixed with marine aerosol were found to constitute the dominant INP type. Bioaerosols were not observed to play a role in ice nucleation during winter because of their low concentration during this period. The INP concentrations at Jungfraujoch are low in comparison to other studies of INP at this temperature. This represents the first study addressing interannual variations of INP concentrations during winter at one location.

Corresponding author address: Zamin A. Kanji, Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstr. 16, CH-8092 Zürich, Switzerland. E-mail: zamin.kanji@env.ethz.ch; yvonne.boose@env.ethz.ch

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Save
  • Appenzeller, C., M. Begert, E. Zenklusen, and S. C. Scherrer, 2008: Monitoring climate at Jungfraujoch in the high Swiss Alpine region. Sci. Total Environ., 391, 262268, doi:10.1016/j.scitotenv.2007.10.005.

    • Search Google Scholar
    • Export Citation
  • Archuleta, C., P. DeMott, and S. Kreidenweis, 2005: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys., 5, 26172634, doi:10.5194/acp-5-2617-2005.

    • Search Google Scholar
    • Export Citation
  • Ardon-Dryer, K., and Z. Levin, 2014: Ground-based measurements of immersion freezing in the eastern Mediterranean. Atmos. Chem. Phys., 14, 52175231, doi:10.5194/acp-14-5217-2014.

    • Search Google Scholar
    • Export Citation
  • Atkinson, J., and Coauthors, 2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355358, doi:10.1038/nature12278.

    • Search Google Scholar
    • Export Citation
  • Attard, E., H. Yang, A.-M. Delort, P. Amato, U. Pöschl, C. Glaux, T. Koop, and C. E. Morris, 2012: Effects of atmospheric conditions on ice nucleation activity of Pseudomonas. Atmos. Chem. Phys., 12, 10 66710 677, doi:10.5194/acp-12-10667-2012.

    • Search Google Scholar
    • Export Citation
  • Avramov, A., and Coauthors, 2011: Toward ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC. J. Geophys. Res., 116, D00T08, doi:10.1029/2011JD015910.

    • Search Google Scholar
    • Export Citation
  • Baltensperger, U., H. W. Gäggeler, D. T. Jost, M. Lugauer, M. Schwikowski, and E. Weingartner, 1997: Aerosol climatology at the high-alpine site Jungfraujoch, Switzerland. J. Geophys. Res., 102, 19 70719 715, doi:10.1029/97JD00928.

    • Search Google Scholar
    • Export Citation
  • Bigg, E., 1967: Cross sections of ice nucleus concentrations at altitude over long paths. J. Atmos. Sci., 24, 226229, doi:10.1175/1520-0469(1967)024<0226:CSOINC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bigg, E., 1973: Ice nucleus concentrations in remote areas. J. Atmos. Sci., 30, 11531157, doi:10.1175/1520-0469(1973)030<1153:INCIRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 571–657. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_Chapter07_FINAL.pdf.]

  • Bukowiecki, N., and Coauthors, 2016: A review of more than 20 years of aerosol observation at the high altitude research station Jungfraujoch, Switzerland (3580 m asl). Aerosol Air Qual. Res., 16, 764788, doi:10.4209/aaqr.2015.05.0305.

    • Search Google Scholar
    • Export Citation
  • Capo, R. C., B. W. Stewart, and O. A. Chadwick, 1998: Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma, 82, 197225, doi:10.1016/S0016-7061(97)00102-X.

    • Search Google Scholar
    • Export Citation
  • Castro, A., J. L. Marcos, J. Dessens, J. L. Sánchez, and R. Fraile, 1998: Concentration of ice nuclei in continental and maritime air masses in León (Spain). Atmos. Res., 47–48, 155167, doi:10.1016/S0169-8095(98)00060-X.

    • Search Google Scholar
    • Export Citation
  • Chandler, R., and E. M. Scott, 2011: Statistical Methods for Trend Detection and Analysis in the Environmental Sciences. John Wiley & Sons, Ltd., 388 pp.

  • Chernoff, D. I., and A. K. Bertram, 2010: Effects of sulfate coatings on the ice nucleation properties of a biological ice nucleus and several types of minerals. J. Geophys. Res., 115, D20205, doi:10.1029/2010JD014254.

    • Search Google Scholar
    • Export Citation
  • Chou, C., O. Stetzer, E. Weingartner, Z. Jurányi, Z. A. Kanji, and U. Lohmann, 2011: Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps. Atmos. Chem. Phys., 11, 47254738, doi:10.5194/acp-11-4725-2011.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and Coauthors, 2013: Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles. Atmos. Chem. Phys., 13, 761772, doi:10.5194/acp-13-761-2013.

    • Search Google Scholar
    • Export Citation
  • Collaud Coen, M., E. Weingartner, D. Schaub, C. Hueglin, C. Corrigan, S. Henning, M. Schwikowski, and U. Baltensperger, 2004: Saharan dust events at the Jungfraujoch: Detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmos. Chem. Phys., 4, 24652480, doi:10.5194/acp-4-2465-2004.

    • Search Google Scholar
    • Export Citation
  • Collaud Coen, M., E. Weingartner, M. Furger, S. Nyeki, A. S. H. Prévôt, M. Steinbacher, and U. Baltensperger, 2011: Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types. Atmos. Chem. Phys., 11, 59315944, doi:10.5194/acp-11-5931-2011.

    • Search Google Scholar
    • Export Citation
  • Conen, F., S. Henne, C. Morris, and C. Alewell, 2012: Atmospheric ice nucleators active ≥−12°C can be quantified on PM10 filters. Atmos. Meas. Tech., 5, 321327, doi:10.5194/amt-5-321-2012.

    • Search Google Scholar
    • Export Citation
  • Conen, F., S. Rodríguez, C. Hüglin, S. Henne, E. Herrmann, N. Bukowiecki, and C. Alewell, 2015: Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland. Tellus, 67B, 25014, doi:10.3402/tellusb.v67.25014.

    • Search Google Scholar
    • Export Citation
  • Connolly, P., O. Möhler, P. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9, 28052824, doi:10.5194/acp-9-2805-2009.

    • Search Google Scholar
    • Export Citation
  • Cozic, J., S. Mertes, B. Verheggen, D. J. Cziczo, S. J. Gallavardin, S. Walter, U. Baltensperger, and E. Weingartner, 2008: Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds. J. Geophys. Res., 113, D15209, doi:10.1029/2007JD009266.

    • Search Google Scholar
    • Export Citation
  • Crawford, I., N. H. Robinson, M. J. Flynn, V. E. Foot, M. W. Gallagher, J. A. Huffman, W. R. Stanley, and P. H. Kaye, 2014: Characterisation of bioaerosol emissions from a Colorado pine forest: Results from the BEACHON-RoMBAS experiment. Atmos. Chem. Phys., 14, 85598578, doi:10.5194/acp-14-8559-2014.

    • Search Google Scholar
    • Export Citation
  • Crawford, I., S. Ruske, D. O. Topping, and M. W. Gallagher, 2015: Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol. Atmos. Meas. Tech., 8, 49794991, doi:10.5194/amt-8-4979-2015.

    • Search Google Scholar
    • Export Citation
  • Crawford, I., and Coauthors, 2016: Observations of fluorescent aerosol–cloud interactions in the free troposphere at the High-Altitude Research Station Jungfraujoch. Atmos. Chem. Phys., 16, 22732284, doi:10.5194/acp-16-2273-2016.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 13201324, doi:10.1126/science.1234145.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and K. D. Froyd, 2014: Sampling the composition of cirrus ice residuals. Atmos. Res., 142, 1531, doi:10.1016/j.atmosres.2013.06.012.

    • Search Google Scholar
    • Export Citation
  • Dall’Osto, M., R. M. Harrison, E. J. Highwood, C. O’Dowd, D. Ceburnis, X. Querol, and E. P. Achterberg, 2010: Variation of the mixing state of Saharan dust particles with atmospheric transport. Atmos. Environ., 44, 31353146, doi:10.1016/j.atmosenv.2010.05.030.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003a: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, doi:10.1073/pnas.2532677100.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. Poellot, D. Baumgardner, D. Rogers, S. Brooks, A. Prenni, and S. Kreidenweis, 2003b: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Search Google Scholar
    • Export Citation
  • Després, V., and Coauthors, 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, 15598, doi:10.3402/tellusb.v64i0.15598.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., C. Quick, S. Matthias-Maser, S. Mitra, and R. Jaenicke, 2001: The ice nucleating ability of pollen: Part I: Laboratory studies in deposition and condensation freezing modes. Atmos. Res., 58, 7587, doi:10.1016/S0169-8095(01)00091-6.

    • Search Google Scholar
    • Export Citation
  • Ellison, G. B., A. F. Tuck, and V. Vaida, 1999: Atmospheric processing of organic aerosols. J. Geophys. Res., 104, 11 63311 641, doi:10.1029/1999JD900073.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2014: Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust. Atmos. Chem. Phys., 14, 81101, doi:10.5194/acp-14-81-2014.

    • Search Google Scholar
    • Export Citation
  • Faure, G., 1986: Principles of Isotope Geology. 2nd ed. John Wiley & Sons, Inc., 608 pp.

  • Gerber, H., 1991: Direct measurement of suspended particulate volume concentration and far-infrared extinction coefficient with a laser-diffraction instrument. Appl. Opt., 30, 48244831, doi:10.1364/AO.30.004824.

    • Search Google Scholar
    • Export Citation
  • Hande, L. B., C. Engler, C. Hoose, and I. Tegen, 2015: Seasonal variability of Saharan desert dust and ice nucleating particles over Europe. Atmos. Chem. Phys., 15, 43894397, doi:10.5194/acp-15-4389-2015.

    • Search Google Scholar
    • Export Citation
  • Healy, D. A., D. J. O’Connor, and J. R. Sodeau, 2012: Measurement of the particle counting efficiency of the “Waveband Integrated Bioaerosol Sensor” model number 4 (WIBS-4). J. Aerosol Sci., 47, 9499, doi:10.1016/j.jaerosci.2012.01.003.

    • Search Google Scholar
    • Export Citation
  • Herrmann, E., and Coauthors, 2015: Analysis of long-term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport. J. Geophys. Res. Atmos., 120, 94599480, doi:10.1002/2015JD023660.

    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2015: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques. Atmos. Chem. Phys., 15, 24892518, doi:10.5194/acp-15-2489-2015.

    • Search Google Scholar
    • Export Citation
  • Hodell, D. A., G. A. Mead, and P. A. Mueller, 1990: Variation in the strontium isotopic composition of seawater (8 Ma to present): Implications for chemical weathering rates and dissolved fluxes to the oceans. Chem. Geol. Isot. Geosci. Sect., 80, 291307, doi:10.1016/0168-9622(90)90011-Z.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, doi:10.5194/acp-12-9817-2012.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjánsson, and S. M. Burrows, 2010: How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett., 5, 024009, doi:10.1088/1748-9326/5/2/024009.

    • Search Google Scholar
    • Export Citation
  • Jaeglé, L., D. J. Jacob, Y. Wang, A. J. Weinheimer, B. Ridley, T. L. Campos, G. W. Sachse, and D. E. Hagen, 1998: Sources and chemistry of NOx in the upper troposphere over the United States. Geophys. Res. Lett., 25, 17051708, doi:10.1029/97GL03591.

    • Search Google Scholar
    • Export Citation
  • Kamphus, M., and Coauthors, 2010: Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: Single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos. Chem. Phys., 10, 80778095, doi:10.5194/acp-10-8077-2010.

    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. D. Abbatt, 2006: Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. J. Geophys. Res., 111, D16204, doi:10.1029/2005JD006766.

    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., A. Welti, C. Chou, O. Stetzer, and U. Lohmann, 2013: Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles. Atmos. Chem. Phys., 13, 90979118, doi:10.5194/acp-13-9097-2013.

    • Search Google Scholar
    • Export Citation
  • Kaye, P., W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, 2005: Single particle multichannel bio-aerosol fluorescence sensor. Opt. Express, 13, 35833593, doi:10.1364/OPEX.13.003583.

    • Search Google Scholar
    • Export Citation
  • Ketterer, C., P. Zieger, N. Bukowiecki, M. Collaud Coen, O. Maier, D. Ruffieux, and E. Weingartner, 2014: Investigation of the planetary boundary layer in the Swiss Alps using remote sensing and in situ measurements. Bound.-Layer Meteor., 151, 317334, doi:10.1007/s10546-013-9897-8.

    • Search Google Scholar
    • Export Citation
  • Klein, H., and Coauthors, 2010: Saharan dust and ice nuclei over Central Europe. Atmos. Chem. Phys., 10, 10 21110 221, doi:10.5194/acp-10-10211-2010.

    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., and T. Koop, 2006: Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res., 111, D12201, doi:10.1029/2005JD006894.

    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., P. A. Alpert, B. Wang, R. E. O’Brien, S. T. Kelly, A. Laskin, M. K. Gilles, and R. C. Moffet, 2014: Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study. J. Geophys. Res. Atmos., 119, 10 36510 381, doi:10.1002/2014JD021866.

    • Search Google Scholar
    • Export Citation
  • Kulkarni, P., P. Baron, and K. Willeke, Eds., 2011: Aerosol Measurement: Principles, Techniques, and Applications. 3rd ed. John Wiley & Sons, Inc., 883 pp., doi:10.1002/9781118001684.

  • Kupiszewski, P., and Coauthors, 2015: The Ice Selective Inlet: A novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds. Atmos. Meas. Tech., 8, 30873106, doi:10.5194/amt-8-3087-2015.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 600 pp.

  • Lance, S., C. A. Brock, D. Rogers, and J. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., and S. A. Yankofsky, 1983: Contact versus immersion freezing of freely suspended droplets by bacterial ice nuclei. J. Climate Appl. Meteor., 22, 19641966, doi:10.1175/1520-0450(1983)022<1964:CVIFOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.

    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2015: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmos. Chem. Phys., 15, 12 95312 969, doi:10.5194/acp-15-12953-2015.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and B. Kärcher, 2002: First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model. J. Geophys. Res., 107, AAC 8-1–AAC 8-13, doi:10.1029/2001JD000767.

    • Search Google Scholar
    • Export Citation
  • López, M. L., and E. E. Ávila, 2013: Measurements of natural deposition ice nuclei in Córdoba, Argentina. Atmos. Chem. Phys., 13, 31113119, doi:10.5194/acp-13-3111-2013.

    • Search Google Scholar
    • Export Citation
  • Lugauer, M., U. Baltensperger, M. Furger, H. W. Gäggeler, D. T. Jost, M. Schwikowski, and H. Wanner, 1998: Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl). Tellus, 50B, 7692, doi:10.1034/j.1600-0889.1998.00006.x.

    • Search Google Scholar
    • Export Citation
  • Maki, L., and K. J. Willoughby, 1978: Bacteria as biogenic sources of freezing nuclei. J. Appl. Meteor., 17, 10491053, doi:10.1175/1520-0450(1978)017<1049:BABSOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manly, B. F., 2001: Statistics for Environmental Science and Management. Chapman and Hall/CRC, 336 pp.

  • Marcolli, C., 2014: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys., 14, 20712104, doi:10.5194/acp-14-2071-2014.

    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2015: The micro-orifice uniform deposit impactor–droplet freezing technique (MOUDI-DFT) for measuring concentrations of ice nucleating particles as a function of size: Improvements and initial validation. Atmos. Meas. Tech., 8, 24492462, doi:10.5194/amt-8-2449-2015.

    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2016: Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe. Atmos. Chem. Phys., 16, 16371651, doi:10.5194/acp-16-1637-2016.

    • Search Google Scholar
    • Export Citation
  • McCluskey, C. S., and Coauthors, 2014: Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires. J. Geophys. Res. Atmos., 119, 10 45810 470, doi:10.1002/2014JD021980.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2008: Heterogeneous ice nucleation activity of bacteria: New laboratory experiments at simulated cloud conditions. Biogeosciences, 5, 14251435, doi:10.5194/bg-5-1425-2008.

    • Search Google Scholar
    • Export Citation
  • Novosselov, I., and P. C. Ariessohn, 2014: Rectangular slit atmospheric pressure aerodynamic lens aerosol concentrator. Aerosol Sci. Technol., 48, 163172, doi:10.1080/02786826.2013.865832.

    • Search Google Scholar
    • Export Citation
  • Pandey Deolal, S., D. Brunner, M. Steinbacher, U. Weers, and J. Staehelin, 2012: Long-term in situ measurements of NOx and NOy at Jungfraujoch 1998–2009: Time series analysis and evaluation. Atmos. Chem. Phys., 12, 25512566, doi:10.5194/acp-12-2551-2012.

    • Search Google Scholar
    • Export Citation
  • Pandey Deolal, S., J. Staehelin, D. Brunner, J. Cui, M. Steinbacher, C. Zellweger, S. Henne, and M. K. Vollmer, 2013: Transport of PAN and NOy from different source regions to the Swiss high alpine site Jungfraujoch. Atmos. Environ., 64, 103115, doi:10.1016/j.atmosenv.2012.08.021.

    • Search Google Scholar
    • Export Citation
  • Pandey Deolal, S., S. Henne, L. Ries, S. Gilge, U. Weers, M. Steinbacher, J. Staehelin, and T. Peter, 2014: Analysis of elevated springtime levels of Peroxyacetyl nitrate (PAN) at the high Alpine research sites Jungfraujoch and Zugspitze. Atmos. Chem. Phys., 14, 12 55312 571, doi:10.5194/acp-14-12553-2014.

    • Search Google Scholar
    • Export Citation
  • Parlanti, E., K. Wörz, L. Geoffroy, and M. Lamotte, 2000: Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem., 31, 17651781, doi:10.1016/S0146-6380(00)00124-8.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114, D07209, doi:10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. Demott, C. Andronache, K. A. Pratt, K. A. Prather, R. Subramanian, and C. Twohy, 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci., 70, 378409, doi:10.1175/JAS-D-12-080.1.

    • Search Google Scholar
    • Export Citation
  • Pöhlker, C., J. A. Huffman, and U. Pöschl, 2012: Autofluorescence of atmospheric bioaerosols—Fluorescent biomolecules and potential interferences. Atmos. Meas. Tech., 5, 3771, doi:10.5194/amt-5-37-2012.

    • Search Google Scholar
    • Export Citation
  • Pöschl, U., Y. Rudich, and M. Ammann, 2007: Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions—Part 1: General equations, parameters, and terminology. Atmos. Chem. Phys., 7, 59896023, doi:10.5194/acp-7-5989-2007.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., P. J. DeMott, D. C. Rogers, S. Kreidenweis, G. M. McFarquhar, and G. Zhang, 2009: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61B, 436448, doi:10.1111/j.1600-0889.2009.00415.x.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Kluwer Academic Publishers, 954 pp., doi:10.1007/978-0-306-48100-0.

  • Rogers, D., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 1998: Measurements of ice nucleating aerosols during SUCCESS. Geophys. Res. Lett., 25, 13831386, doi:10.1029/97GL03478.

    • Search Google Scholar
    • Export Citation
  • Rogers, D., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18, 725741, doi:10.1175/1520-0426(2001)018<0725:ACFDCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and M. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon, 304 pp.

  • Salam, A., U. Lohmann, and G. Lesins, 2007: Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles. Atmos. Chem. Phys., 7, 39233931, doi:10.5194/acp-7-3923-2007.

    • Search Google Scholar
    • Export Citation
  • Santachiara, G., L. Di Matteo, F. Prodi, and F. Belosi, 2010: Atmospheric particles acting as ice forming nuclei in different size ranges. Atmos. Res., 96, 266272, doi:10.1016/j.atmosres.2009.08.004.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. P. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. John Wiley & Sons, Inc., 1232 pp.

  • Stedmon, C. A., S. Markager, and R. Bro, 2003: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem., 82, 239254, doi:10.1016/S0304-4203(03)00072-0.

    • Search Google Scholar
    • Export Citation
  • Stein, M., A. Starinsky, A. Katz, S. Goldstein, M. Machlus, and A. Schramm, 1997: Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochim. Cosmochim. Acta, 61, 39753992, doi:10.1016/S0016-7037(97)00191-9.

    • Search Google Scholar
    • Export Citation
  • Steinbacher, M., L. Emmenegger, and C. Hueglin, 2015: National Air Pollution Monitoring Network (NABEL). International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat Activity Rep. 2014, 85–88. [Available online at http://www.ifjungo.ch/reports/2014/pdf/124_Empa_Hueglin_cf.pdf.]

  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, doi:10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Stopelli, E., F. Conen, C. E. Morris, E. Herrmann, N. Bukowiecki, and C. Alewell, 2015: Ice nucleation active particles are efficiently removed by precipitating clouds. Sci. Rep., 5, 16433, doi:10.1038/srep16433.

    • Search Google Scholar
    • Export Citation
  • Sturm, P., B. Tuzson, S. Henne, and L. Emmenegger, 2013: Tracking isotopic signatures of CO2 at the high altitude site Jungfraujoch with laser spectroscopy: Analytical improvements and representative results. Atmos. Meas. Tech., 6, 16591671, doi:10.5194/amt-6-1659-2013.

    • Search Google Scholar
    • Export Citation
  • Sullivan, R. C., and Coauthors, 2010: Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos. Chem. Phys., 10, 11 47111 487, doi:10.5194/acp-10-11471-2010.

    • Search Google Scholar
    • Export Citation
  • Targino, A., and Coauthors, 2009: Influence of particle chemical composition on the phase of cold clouds at a high-alpine site in Switzerland. J. Geophys. Res., 114, D18206, doi:10.1029/2008JD011365.

    • Search Google Scholar
    • Export Citation
  • Vochezer, P., E. Järvinen, R. Wagner, P. Kupiszewski, T. Leisner, and M. Schnaiter, 2016: In situ characterization of mixed phase clouds using the Small Ice Detector and the Particle Phase Discriminator. Atmos. Meas. Tech., 9, 159177, doi:10.5194/amt-9-159-2016.

    • Search Google Scholar
    • Export Citation
  • Voerkelius, S., and Coauthors, 2010: Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem., 118, 933940, doi:10.1016/j.foodchem.2009.04.125.

    • Search Google Scholar
    • Export Citation
  • Wagner, R., O. Möhler, H. Saathoff, and M. Schnaiter, 2014: Enhanced high-temperature ice nucleation ability of crystallized aerosol particles after preactivation at low temperature. J. Geophys. Res. Atmos., 119, 82128230, doi:10.1002/2014JD021741.

    • Search Google Scholar
    • Export Citation
  • Weingartner, E., S. Nyeki, and U. Baltensperger, 1999: Seasonal and diurnal variation of aerosol size distributions (10 < D < 750 nm) at a high-alpine site (Jungfraujoch 3580 m asl). J. Geophys. Res., 104, 26 80926 820, doi:10.1029/1999JD900170.