A Lagrangian View of Moisture Dynamics during DYNAMO

Walter M. Hannah Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, Raleigh, North Carolina

Search for other papers by Walter M. Hannah in
Current site
Google Scholar
PubMed
Close
,
Brian E. Mapes Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian E. Mapes in
Current site
Google Scholar
PubMed
Close
, and
Gregory S. Elsaesser NASA Goddard Institute for Space Studies, Columbia University, New York, New York

Search for other papers by Gregory S. Elsaesser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Column water vapor (CWV) is studied using data from the Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment. A distinctive moist mode in tropical CWV probability distributions motivates the work. The Lagrangian CWV tendency (LCT) leaves together the compensating tendencies from phase change and vertical advection, quantities that cannot be measured accurately by themselves, to emphasize their small residual, which governs evolution. The slope of LCT versus CWV suggests that the combined effects of phase changes and vertical advection act as a robust positive feedback on CWV variations, while evaporation adds a broadscale positive tendency. Analyzed diabatic heating profiles become deeper and stronger as CWV increases. Stratiform heating is found to accompany Lagrangian drying at high CWV, but its association with deep convection makes the mean LCT positive at high CWV. Lower-tropospheric wind convergence is found in high-CWV air masses, acting to shrink their area in time. When ECMWF heating profile indices and S-Pol and TRMM radar data are binned jointly by CWV and LCT, bottom-heavy heating associated with shallow and congestus convection is found in columns transitioning through Lagrangian moistening into the humid, high-rain-rate mode of the CWV distribution near 50–55 mm, while nonraining columns and columns with widespread stratiform precipitation are preferentially associated with Lagrangian drying. Interpolated sounding-array data produce substantial errors in LCT budgets, because horizontal advection is inaccurate without satellite input to constrain horizontal gradients.

Corresponding author address: Walter M. Hannah, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695. E-mail: walter@hannahlab.org

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Column water vapor (CWV) is studied using data from the Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment. A distinctive moist mode in tropical CWV probability distributions motivates the work. The Lagrangian CWV tendency (LCT) leaves together the compensating tendencies from phase change and vertical advection, quantities that cannot be measured accurately by themselves, to emphasize their small residual, which governs evolution. The slope of LCT versus CWV suggests that the combined effects of phase changes and vertical advection act as a robust positive feedback on CWV variations, while evaporation adds a broadscale positive tendency. Analyzed diabatic heating profiles become deeper and stronger as CWV increases. Stratiform heating is found to accompany Lagrangian drying at high CWV, but its association with deep convection makes the mean LCT positive at high CWV. Lower-tropospheric wind convergence is found in high-CWV air masses, acting to shrink their area in time. When ECMWF heating profile indices and S-Pol and TRMM radar data are binned jointly by CWV and LCT, bottom-heavy heating associated with shallow and congestus convection is found in columns transitioning through Lagrangian moistening into the humid, high-rain-rate mode of the CWV distribution near 50–55 mm, while nonraining columns and columns with widespread stratiform precipitation are preferentially associated with Lagrangian drying. Interpolated sounding-array data produce substantial errors in LCT budgets, because horizontal advection is inaccurate without satellite input to constrain horizontal gradients.

Corresponding author address: Walter M. Hannah, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695. E-mail: walter@hannahlab.org

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, doi:10.1175/JAS-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and Coauthors, 2015: The Amazon Dense GNSS Meteorological Network: A new approach for examining water vapor and deep convection interactions in the tropics. Bull. Amer. Meteor. Soc., 96, 21512165, doi:10.1175/BAMS-D-13-00171.1.

    • Search Google Scholar
    • Export Citation
  • Alishouse, J. C., S. A. Snyder, J. Vongsathorn, and R. R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811816, doi:10.1109/36.58967.

    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. W. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 33273349, doi:10.1175/JAS-D-13-0240.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., M. Peters, and L. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, Q., G. J. Zhang, and T. Zhou, 2013: Impacts of shallow convection on MJO simulation: A moist static energy and moisture budget analysis. J. Climate, 26, 24172431, doi:10.1175/JCLI-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1963: A note of large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, doi:10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, doi:10.1175/JAS-D-13-038.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Pirou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., C. D. Kummerow, T. S. Lecuyer, Y. N. Takayabu, and S. Shige, 2010: Observed self-similarity of precipitation regimes over the tropical oceans. J. Climate, 23, 26862698, doi:10.1175/2010JCLI3330.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. A. McFarlane, C. Schumacher, S. Ellis, J. Comstock, and N. Bharadwaj, 2014: Constructing a merged cloud–precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE experiment at Addu Atoll. J. Atmos. Oceanic Technol., 31, 10211042, doi:10.1175/JTECH-D-13-00132.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., S. Gjorgjievska, and D. J. Raymond, 2012: Effects of varying the shape of the convective heating profile on convectively coupled gravity waves and moisture modes. J. Atmos. Sci., 69, 25052519, doi:10.1175/JAS-D-11-0308.1.

    • Search Google Scholar
    • Export Citation
  • Funk, A., C. Schumacher, and J. Awaka, 2013: Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257271, doi:10.2151/jmsj.2013-302.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., G. N. Kiladis, A. Denno, and T. M. Rickenbach, 2008: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813833, doi:10.1175/2007JAS2314.1.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770, doi:10.1175/2011JCLI3803.1.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst., 6, 420440, doi:10.1002/2013MS000272.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and G. Huffman, 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, doi:10.1002/met.284.

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, 142, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2014: Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. J. Climate, 27, 53795395, doi:10.1175/JCLI-D-13-00497.1.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., and Coauthors, 2015: Vertical structure and diabatic processes of the Madden–Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening. J. Geophys. Res. Atmos., 120, 46904717, doi:10.1002/2014JD022374.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and J. A. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, doi:10.1016/S0309-1708(02)00062-3.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture–stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, doi:10.1175/2007JAS2444.1.

    • Search Google Scholar
    • Export Citation
  • Li, C., X. Jia, J. Ling, W. Zhou, and C. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167187, doi:10.1007/s00382-008-0455-x.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309, doi:10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ling, J., and C. Zhang, 2011: Structural evolution in heating profiles of the MJO in global reanalyses and TRMM retrievals. J. Climate, 24, 825842, doi:10.1175/2010JCLI3826.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and T. S. L’Ecuyer, 2014: A mechanism of tropical convection inferred from observed variability in the moist static energy budget. J. Atmos. Sci., 71, 37473766, doi:10.1175/JAS-D-14-0015.1.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2010: The multiscale organization of moist convection and the intersection of weather and climate. Climate Dynamics: Why Does Climate Vary?, Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 3–26.

  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, doi:10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, doi:10.1175/2008JCLI2739.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (9), doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Riley Dellaripa, E. M., and E. D. Maloney, 2015: Analysis of MJO wind-flux feedbacks in the Indian Ocean using RAMA buoy observations. J. Meteor. Soc. Japan, 93A, 120, doi:10.2151/jmsj.2015-021.

    • Search Google Scholar
    • Export Citation
  • Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2012: Temperature–moisture dependence of the deep convective transition as a constraint on entrainment in climate models. J. Atmos. Sci., 69, 13401358, doi:10.1175/JAS-D-11-0164.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and W. Wang, 2010: The Madden–Julian oscillation simulated in the NCEP Climate Forecast System Model: The importance of stratiform heating. J. Climate, 23, 47704793, doi:10.1175/2010JCLI2983.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. D. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, doi:10.1175/JAS-D-14-0052.1.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523, doi:10.1175/2008JAS2690.1.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 20302046, doi:10.1175/2009JCLI3110.1.

    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., C.-H. Sui, and T. Li, 2015: Moistening processes for Madden–Julian oscillations during DYNAMO/CINDY. J. Climate, 28, 30413057, doi:10.1175/JCLI-D-14-00416.1.

    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., and C. S. Velden, 2011: Seamless advective blending of total precipitable water retrievals from polar-orbiting satellites. J. Appl. Meteor. Climatol., 50, 10241036, doi:10.1175/2010JAMC2589.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., J. Gottschalck, E. D. Maloney, M. W. Moncrieff, F. Vitart, D. E. Waliser, B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, doi:10.1002/grl.50244.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie, 1999: Sensitivity of the vertical velocity and advective tendencies analyzed over the ARM SGP site to input data and analysis methods. Proc. Ninth ARM Science Team Meeting, San Antonio, TX, ARM, 1–5. [Available online at https://www.arm.gov/publications/proceedings/conf09/extended_abs/zhang_mh.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 854 359 127
PDF Downloads 248 87 5