Past, Present, and Future Atmospheric Nitrogen Deposition

M. Kanakidou Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece

Search for other papers by M. Kanakidou in
Current site
Google Scholar
PubMed
Close
,
S. Myriokefalitakis Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece

Search for other papers by S. Myriokefalitakis in
Current site
Google Scholar
PubMed
Close
,
N. Daskalakis Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece

Search for other papers by N. Daskalakis in
Current site
Google Scholar
PubMed
Close
,
G. Fanourgakis Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece

Search for other papers by G. Fanourgakis in
Current site
Google Scholar
PubMed
Close
,
A. Nenes School of Earth and Atmospheric Sciences, and School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by A. Nenes in
Current site
Google Scholar
PubMed
Close
,
A. R. Baker Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by A. R. Baker in
Current site
Google Scholar
PubMed
Close
,
K. Tsigaridis Center for Climate Systems Research, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by K. Tsigaridis in
Current site
Google Scholar
PubMed
Close
, and
N. Mihalopoulos Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, and Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece

Search for other papers by N. Mihalopoulos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reactive nitrogen emissions into the atmosphere are increasing as a result of human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry–transport model [Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4-ECPL)] is here used to calculate the global distribution of total nitrogen deposition, accounting for the first time for both its inorganic and organic fractions in gaseous and particulate phases and past and projected changes due to anthropogenic activities. The anthropogenic and biomass-burning Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) historical and RCP6.0 and RCP8.5 emissions scenarios are used. Accounting for organic nitrogen (ON) primary emissions, the present-day global nitrogen atmospheric source is about 60% anthropogenic, while total N deposition increases by about 20% relative to simulations without ON primary emissions. About 20%–25% of total deposited N is ON. About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen (IN), as is considered in most global models. Almost a threefold increase over land (twofold over the ocean) has been calculated for soluble N deposition due to human activities from 1850 to present. The investigated projections indicate significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Sensitivity simulations quantify uncertainties due to the investigated model parameterizations of IN partitioning onto aerosols and of N chemically fixed on organics to be within 10% for the total soluble N deposition and between 25% and 35% for the dissolved ON deposition. Larger uncertainties are associated with N emissions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0278.s1.

Current affiliation: LATMOS, IPSL, Paris, France.

Corresponding author address: M. Kanakidou, Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, P.O. Box 2208, 70013 Heraklion, Greece. E-mail: mariak@uoc.gr

Abstract

Reactive nitrogen emissions into the atmosphere are increasing as a result of human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry–transport model [Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4-ECPL)] is here used to calculate the global distribution of total nitrogen deposition, accounting for the first time for both its inorganic and organic fractions in gaseous and particulate phases and past and projected changes due to anthropogenic activities. The anthropogenic and biomass-burning Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) historical and RCP6.0 and RCP8.5 emissions scenarios are used. Accounting for organic nitrogen (ON) primary emissions, the present-day global nitrogen atmospheric source is about 60% anthropogenic, while total N deposition increases by about 20% relative to simulations without ON primary emissions. About 20%–25% of total deposited N is ON. About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen (IN), as is considered in most global models. Almost a threefold increase over land (twofold over the ocean) has been calculated for soluble N deposition due to human activities from 1850 to present. The investigated projections indicate significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Sensitivity simulations quantify uncertainties due to the investigated model parameterizations of IN partitioning onto aerosols and of N chemically fixed on organics to be within 10% for the total soluble N deposition and between 25% and 35% for the dissolved ON deposition. Larger uncertainties are associated with N emissions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0278.s1.

Current affiliation: LATMOS, IPSL, Paris, France.

Corresponding author address: M. Kanakidou, Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, P.O. Box 2208, 70013 Heraklion, Greece. E-mail: mariak@uoc.gr
Save
  • Altieri, K. E., M. G. Hastings, A. J. Peters, and D. M. Sigman, 2012: Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry. Atmos. Chem. Phys., 12, 35573571, doi:10.5194/acp-12-3557-2012.

    • Search Google Scholar
    • Export Citation
  • Bouwman, A. F., D. S. Lee, W. A. H. Asman, F. J. Dentener, K. W. Van Der Hoek, and J. G. J. Olivier, 1997: A global high-resolution emission inventory for ammonia. Global Biogeochem. Cycles, 11, 561587, doi:10.1029/97GB02266.

    • Search Google Scholar
    • Export Citation
  • Cape, J. N., S. E. Cornell, T. D. Jickells, and E. Nemitz, 2011: Organic nitrogen in the atmosphere—Where does it come from? A review of sources and methods. Atmos. Res., 102, 3048, doi:10.1016/j.atmosres.2011.07.009.

    • Search Google Scholar
    • Export Citation
  • Christodoulaki, S., G. Petihakis, M. Kanakidou, N. Mihalopoulos, Tsiaras, and G. Triantafyllou, 2013: Atmospheric deposition in the Eastern Mediterranean. A driving force for ecosystem dynamics. J. Mar. Syst., 109110, 7893, doi:10.1016/j.jmarsys.2012.07.007.

    • Search Google Scholar
    • Export Citation
  • Cornell, S. C., 2011: Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component. Environ. Pollut., 159, 22142222, doi:10.1016/j.envpol.2010.11.014.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dentener, F. J., and Coauthors, 2006: Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem. Cycles, 20, GB4003, doi:10.1029/2005GB002672.

    • Search Google Scholar
    • Export Citation
  • Driscoll, C. T., and Coauthors, 2003: Nitrogen pollution in the northeastern United States: Sources, effects, and management options. Bioscience, 53, 357374, doi:10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duce, R. A., and Coauthors, 1983: Organic material in the global troposphere. Rev. Geophys. Space Phys., 21, 921952, doi:10.1029/RG021i004p00921.

    • Search Google Scholar
    • Export Citation
  • Duce, R. A., and Coauthors, 1991: The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles, 5, 193259, doi:10.1029/91GB01778.

    • Search Google Scholar
    • Export Citation
  • Duce, R. A., and Coauthors, 2008: Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320, 893897, doi:10.1126/science.1150369.

    • Search Google Scholar
    • Export Citation
  • Facchini, M. C., and Coauthors, 2008: Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol., 42, 91169121, doi:10.1021/es8018385.

    • Search Google Scholar
    • Export Citation
  • Fountoukis, C., and A. Nenes, 2007: ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4 +–Na+–SO4 2−–NO3 –Cl–H2O aerosols. Atmos. Chem. Phys., 7, 46394659, doi:10.5194/acp-7-4639-2007.

    • Search Google Scholar
    • Export Citation
  • Franze, T., M. G. Weller, R. Niessner, and U. Pöschl, 2005: Protein nitration by polluted air. Environ. Sci. Technol., 39, 16731678, doi:10.1021/es0488737.

    • Search Google Scholar
    • Export Citation
  • Galloway, J. N., and Coauthors, 2008: Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889892, doi:10.1126/science.1136674.

    • Search Google Scholar
    • Export Citation
  • Ge, X., A. S. Wexler, S. L. Clegg, 2011: Atmospheric amines—Part I. A review. Atmos. Environ., 45, 524546, doi:10.1016/j.atmosenv.2010.10.012.

    • Search Google Scholar
    • Export Citation
  • Granier, C., and Coauthors, 2011: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109, 163190, doi:10.1007/s10584-011-0154-1.

    • Search Google Scholar
    • Export Citation
  • Ito, A., G. Lin, and J. E. Penner, 2014: Reconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locations. Global Biogeochem. Cycles, 28, 617630, doi:10.1002/2013GB004721.

    • Search Google Scholar
    • Export Citation
  • Ito, A., G. Lin, and J. E. Penner, 2015: Global modeling study of soluble organic nitrogen from open biomass burning. Atmos. Environ., 121, 103112, doi:10.1016/j.atmosenv.2015.01.031.

    • Search Google Scholar
    • Export Citation
  • Kanakidou, M., and Coauthors, 2012: Atmospheric fluxes of organic N and P to the global ocean. Global Biogeochem. Cycles, 26, GB3026, doi:10.1029/2011GB004277.

    • Search Google Scholar
    • Export Citation
  • Kanakidou, M., N. Daskalakis, S. Myriokefalitakis, and K. Tsigaridis, 2014: Past and future changes of organic and inorganic nitrogen global atmospheric deposition. COMECAP 2014: E-book of Contributions, M. Kanakidou, N. Mihalopoulos, and P. Nastos, Eds., Vol. 1, University of Greece, 439–443. [Available online at http://comecap2014.chemistry.uoc.gr/COMECAP-ISBN-978-960-524-430-9-vol.%201.pdf.]

  • Karl, M., N. Castell, D. Simpson, S. Solberg, J. Starrfelt, T. Svendby, S.-E. Walker, and R. F. Wright, 2014: Uncertainties in assessing the environmental impact of amine emissions from a CO2 capture plant. Atmos. Chem. Phys., 14, 85338557, doi:10.5194/acp-14-8533-2014.

    • Search Google Scholar
    • Export Citation
  • Karydis, V. A., A. P. Tsimpidi, A. Pozzer, M. Astitha, and J. Lelieveld, 2016: Effects of mineral dust on global atmospheric nitrate concentrations. Atmos. Chem. Phys., 16, 14911509, doi:10.5194/acp-16-1491-2016.

    • Search Google Scholar
    • Export Citation
  • Klimont, Z., S. J. Smith, and J. Cofala, 2013: The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett., 8, 014003, doi:10.1088/1748-9326/8/1/014003.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2013a: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev., 6, 179206, doi:10.5194/gmd-6-179-2013.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2013b: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of historical and projected future changes. Atmos. Chem. Phys., 13, 79978018, doi:10.5194/acp-13-7997-2013.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., J. S. Evans, D. Giannadaki, M. Fnais, and A. Pozzer, 2015: The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367371, doi:10.1038/nature15371.

    • Search Google Scholar
    • Export Citation
  • Mills, M. M., C. Ridame, M. Davey, J. La Roche, and R. J. Geider, 2004: Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature, 429, 292294, doi:10.1038/nature02550.

    • Search Google Scholar
    • Export Citation
  • Myriokefalitakis, S., K. Tsigaridis, N. Mihalopoulos, J. Sciare, A. Nenes, K. Kawamura, A. Segers, and M. Kanakidou, 2011: In-cloud oxalate formation in the global troposphere: A 3-D modeling study. Atmos. Chem. Phys., 11, 57615782, doi:10.5194/acp-11-5761-2011.

    • Search Google Scholar
    • Export Citation
  • Myriokefalitakis, S., N. Daskalakis, N. Mihalopoulos, A. R. Baker, A. Nenes, and M. Kanakidou, 2015: Changes in dissolved iron deposition to the oceans driven by human activity: A 3-D global modelling study. Biogeosciences, 12, 39733992, doi:10.5194/bg-12-3973-2015.

    • Search Google Scholar
    • Export Citation
  • Neff, J. C., E. A. Holland, F. J. Dentener, W. H. McDowell, and K. M. Russell, 2002: The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle? Biogeochemistry, 57, 99136, doi:10.1023/A:1015791622742.

    • Search Google Scholar
    • Export Citation
  • Sander, R., 1999: Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. Air Chemistry Department, Max-Planck Institute of Chemistry, 107 pp. [Available online at http://www.henrys-law.org/.]

  • Schade, G. W., and P. J. Crutzen, 1995: Emission of aliphatic amines from animal husbandry and their reactions: Potential source of N2O and HCN. J. Atmos. Chem., 22, 319346, doi:10.1007/BF00696641.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2016: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. John Wiley, 1152 pp.

  • Sintermann, J., and A. Neftel, 2015: Ideas and perspectives: On the emission of amines from terrestrial vegetation in the context of new atmospheric particle formation. Biogeosciences, 12, 32253240, doi:10.5194/bg-12-3225-2015.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and Coauthors, 2015: Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys., 15, 10 52910 566, doi:10.5194/acp-15-10529-2015.

    • Search Google Scholar
    • Export Citation
  • Tsigaridis, K., and M. Kanakidou, 2003: Global modelling of secondary organic aerosol in the troposphere: A sensitivity analysis. Atmos. Chem. Phys., 3, 18491869, doi:10.5194/acp-3-1849-2003.

    • Search Google Scholar
    • Export Citation
  • Tsigaridis, K., and M. Kanakidou, 2007: Secondary organic aerosol importance in the future atmosphere. Atmos. Environ., 41, 46824692, doi:10.1016/j.atmosenv.2007.03.045.

    • Search Google Scholar
    • Export Citation
  • Tsigaridis, K., M. Krol, F. J. Dentener, Y. Balkanski, J. Lathière, S. Metzger, D. A. Hauglustaine, and M. Kanakidou, 2006: Change in global aerosol composition since preindustrial times. Atmos. Chem. Phys., 6, 51435162, doi:10.5194/acp-6-5143-2006.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Vet, R., and Coauthors, 2014: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ., 93, 3100, doi:10.1016/j.atmosenv.2013.10.060.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6384 2148 202
PDF Downloads 4945 1509 100