• Abalos, M., , B. Legras, , F. Ploeger, , and W. J. Randel, 2015: Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. Atmos., 120, 75347554, doi:10.1002/2015JD023182.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, doi:10.1002/qj.49707532603.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157184, doi:10.1002/2013RG000448.

  • Butchart, N., , and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799802, doi:10.1038/35071047.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741, doi:10.1007/s00382-006-0162-4.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010a: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374, doi:10.1175/2010JCLI3404.1.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010b: Stratospheric dynamics. SPARC CCMVal report on the evaluation of chemistry-climate models, SPARC Rep. 5, WCRP-30/2010, WMO/TD-40, 109–147. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5/.]

  • Butchart, N., and Coauthors, 2011: Multimodel climate and variability of the stratosphere. J. Geophys. Res., 116, D05102, doi:10.1029/2010JD014995.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., , and M. J. Iacono, 1995: Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res., 100, 16 51916 535, doi:10.1029/95JD01386.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Doherty, G. M., , R. E. Newell, , and E. F. Danielsen, 1984: Radiative heating rates near the stratospheric fountain. J. Geophys. Res., 89, 13801384, doi:10.1029/JD089iD01p01380.

    • Search Google Scholar
    • Export Citation
  • Fortuin, J. P., , and U. Langematz, 1994: Update on the global ozone climatology and on concurrent ozone and temperature trends. Atmospheric Sensing and Modelling, R. P. Santer, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 2311), 207216, doi:10.1117/12.198578.

  • Fortuin, J. P., , and H. Kelder, 1998: An ozone climatology based on ozonesonde. J. Geophys. Res., 103, 31 70931 734, doi:10.1029/1998JD200008.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., , and B. Bonnel, 1980: Computations of solar heating of the Earth’s atmosphere: A new parameterization. Beitr. Phys. Atmos., 53, 3562.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., , B. Legras, , A. Beljaars, , J.-J. Morcrette, , A. Simmons, , A. M. Tompkins, , and S. Uppala, 2009: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses. Quart. J. Roy. Meteor. Soc., 135, 2137, doi:10.1002/qj.361.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739, doi:10.1175/2008JAS2712.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , P. M. Forster, , M. Fujiwara, , Q. Fu, , H. Vömel, , L. K. Gohar, , C. Johanson, , and M. Ammerman, 2004: Radiation balance of the tropical tropopause layer. J. Geophys. Res., 109, D07103, doi:10.1029/2003JD004190.

    • Search Google Scholar
    • Export Citation
  • Grooß, J.-U., , and J. Russell III, 2005: Technical note: A stratospheric climatology for O3, H2O, CH4, NOx, HCl and HF derived from HALOE measurements. Atmos. Chem. Phys., 5, 27972807, doi:10.5194/acp-5-2797-2005.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , J. R. Holton, , and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 19691972, doi:10.1029/2000GL012833.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , M. E. McIntyre, , T. G. Shepherd, , C. J. Marks, , and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651680, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1986: Meridional distribution of stratospheric trace constituents. J. Atmos. Sci., 43, 12381242, doi:10.1175/1520-0469(1986)043<1238:MDOSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ming, A., , P. Hitchcock, , and P. Haynes, 2016: The response of the lower stratosphere to zonally symmetric thermal and mechanical forcing. J. Atmos. Sci., 73, 19031922, doi:10.1175/JAS-D-15-0294.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Monge-Sanz, B. M., , M. P. Chipperfield, , D. P. Dee, , A. J. Simmons, , and S. M. Uppala, 2013: Improvements in the stratospheric transport achieved by a chemistry transport model with ECMWF (re)analyses: Identifying effects and remaining challenges. Quart. J. Roy. Meteor. Soc., 139, 654673, doi:10.1002/qj.1996.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., , E. J. Mlawer, , M. J. Iacono, , and S. A. Clough, 2001: Changes to the Operational Forecasting System. ECMWF Newsletter, No. 91, ECMWF, Reading, United Kingdom, 1–2.

  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809, doi:10.2151/jmsj.80.793.

  • Ramachandran, S., , V. Ramaswamy, , G. L. Stenchikov, , and A. Robock, 2000: Radiative impact of the Mount Pinatubo volcanic eruption: Lower stratospheric response. J. Geophys. Res., 105, 24 40924 429, doi:10.1029/2000JD900355.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, doi:10.1038/ngeo1733.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., 2002: Wave-driven mean tropical upwelling in the lower stratosphere. J. Atmos. Sci., 59, 27452759, doi:10.1175/1520-0469(2002)059<2745:WDMTUI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., , N. Butchart, , and S. C. Hardiman, 2012: The Brewer–Dobson circulation inferred from ERA-Interim. Quart. J. Roy. Meteor. Soc., 138, 878888, doi:10.1002/qj.966.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., , and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797, doi:10.1175/2010JAS3608.1.

    • Search Google Scholar
    • Export Citation
  • Tegtmeier, S., and Coauthors, 2013: SPARC Data Initiative: A comparison of ozone climatologies from international satellite limb sounders. J. Geophys. Res. Atmos., 118, 12 22912 247, doi:10.1002/2013JD019877.

    • Search Google Scholar
    • Export Citation
  • Wright, J. S., , and S. Fueglistaler, 2013: Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere. Atmos. Chem. Phys., 13, 95659576, doi:10.5194/acp-13-9565-2013.

    • Search Google Scholar
    • Export Citation
  • Yang, H., , E. Olaguer, , and K. K. Tung, 1991: Simulation of the present-day atmospheric ozone, odd nitrogen, chlorine and other species using a coupled 2-D model in isentropic coordinates. J. Atmos. Sci., 48, 442471, doi:10.1175/1520-0469(1991)048<0442:SOTPDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhong, W., , and J. D. Haigh, 1995: Improved broadband emissivity parameterization for water vapor cooling rate calculations. J. Atmos. Sci., 52, 124138, doi:10.1175/1520-0469(1995)052<0124:IBEPFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., , and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, doi:10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 4
PDF Downloads 15 15 4

The Double Peak in Upwelling and Heating in the Tropical Lower Stratosphere

View More View Less
  • 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
© Get Permissions
Restricted access

Abstract

The processes responsible for double-peak latitudinal structures in the time-averaged tropical lower-stratospheric upwelling, centered near 70 hPa and 20°N/S, previously noted in ERA-Interim and other reanalysis and model datasets, are considered. It is demonstrated that the structure of the wave force resolved by ERA-Interim consistently balances the angular momentum transport associated with the double peak. Analysis of the corresponding structures in diabatic heating rates from ERA-Interim indicates that the peaks arise predominantly from the meridional structure in ozone concentrations and the associated absorption of both shortwave and longwave radiation. Additional smaller contributions arise from local absorption of longwave radiation emitted from the relatively warm layers above and below, as well as from cloud-related radiative effects and nonradiative diabatic heating. The temperature at 70 hPa is slightly higher near 20°N/S than at the equator, opposite of what would be expected if the latitudinal structure in radiative heating were associated with local relaxation. It is proposed on the basis of this analysis that the primary cause of the peaks in upwelling is the externally imposed (i.e., nonrelaxational) part of the radiative heating field. The dynamical plausibility of this hypothesis is investigated in a companion paper.

Corresponding author address: Alison Ming, DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom. E-mail: a.ming@damtp.cam.ac.uk

Abstract

The processes responsible for double-peak latitudinal structures in the time-averaged tropical lower-stratospheric upwelling, centered near 70 hPa and 20°N/S, previously noted in ERA-Interim and other reanalysis and model datasets, are considered. It is demonstrated that the structure of the wave force resolved by ERA-Interim consistently balances the angular momentum transport associated with the double peak. Analysis of the corresponding structures in diabatic heating rates from ERA-Interim indicates that the peaks arise predominantly from the meridional structure in ozone concentrations and the associated absorption of both shortwave and longwave radiation. Additional smaller contributions arise from local absorption of longwave radiation emitted from the relatively warm layers above and below, as well as from cloud-related radiative effects and nonradiative diabatic heating. The temperature at 70 hPa is slightly higher near 20°N/S than at the equator, opposite of what would be expected if the latitudinal structure in radiative heating were associated with local relaxation. It is proposed on the basis of this analysis that the primary cause of the peaks in upwelling is the externally imposed (i.e., nonrelaxational) part of the radiative heating field. The dynamical plausibility of this hypothesis is investigated in a companion paper.

Corresponding author address: Alison Ming, DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom. E-mail: a.ming@damtp.cam.ac.uk
Save