Growth and Decay of a Convective Boundary Layer over a Surface with a Constant Temperature

Chiel C. van Heerwaarden Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Chiel C. van Heerwaarden in
Current site
Google Scholar
PubMed
Close
and
Juan Pedro Mellado Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Juan Pedro Mellado in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The growth and decay of a convective boundary layer (CBL) over a surface with a constant surface temperature that develops into a linear stratification is studied, and a mathematical model for this system is derived. The study is based on direct numerical simulations with four different Reynolds numbers; the two simulations with the largest Reynolds numbers display Reynolds number similarity, suggesting that the results can be extrapolated to the atmosphere. Because of the interplay of the growing CBL and the gradually decreasing surface buoyancy flux, the system has a complex time evolution in which integrated kinetic energy, buoyancy flux, and dissipation peak and subsequently decay. The derived model provides characteristic scales for bulk properties of the CBL. Even though the system is unsteady, self-similar vertical profiles of buoyancy, buoyancy flux, and velocity variances are recovered. There are two important implications for atmospheric modeling. First, the magnitude of the surface buoyancy flux sets the time scale of the system; thus, over a rough surface the roughness length is a key variable. Therefore, the performance of the surface model is crucial in large-eddy simulations of convection over water surfaces. Second, during the phase in which kinetic energy decays, the integrated kinetic energy never follows a power law, because the buoyancy flux and dissipation balance until the kinetic energy has almost vanished. Therefore, the applicability of power-law decay models to the afternoon transition in the atmospheric boundary layer is questionable; the presented model provides a physically sound alternative.

Corresponding author address: Chiel C. van Heerwaarden, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands. E-mail: chiel.vanheerwaarden@wur.nl

Abstract

The growth and decay of a convective boundary layer (CBL) over a surface with a constant surface temperature that develops into a linear stratification is studied, and a mathematical model for this system is derived. The study is based on direct numerical simulations with four different Reynolds numbers; the two simulations with the largest Reynolds numbers display Reynolds number similarity, suggesting that the results can be extrapolated to the atmosphere. Because of the interplay of the growing CBL and the gradually decreasing surface buoyancy flux, the system has a complex time evolution in which integrated kinetic energy, buoyancy flux, and dissipation peak and subsequently decay. The derived model provides characteristic scales for bulk properties of the CBL. Even though the system is unsteady, self-similar vertical profiles of buoyancy, buoyancy flux, and velocity variances are recovered. There are two important implications for atmospheric modeling. First, the magnitude of the surface buoyancy flux sets the time scale of the system; thus, over a rough surface the roughness length is a key variable. Therefore, the performance of the surface model is crucial in large-eddy simulations of convection over water surfaces. Second, during the phase in which kinetic energy decays, the integrated kinetic energy never follows a power law, because the buoyancy flux and dissipation balance until the kinetic energy has almost vanished. Therefore, the applicability of power-law decay models to the afternoon transition in the atmospheric boundary layer is questionable; the presented model provides a physically sound alternative.

Corresponding author address: Chiel C. van Heerwaarden, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands. E-mail: chiel.vanheerwaarden@wur.nl
Save
  • Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270, doi:10.1002/qj.49712152203.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640, doi:10.1002/qj.49708135027.

  • Darbieu, C., and Coauthors, 2015: Turbulence vertical structure of the boundary layer during the afternoon transition. Atmos. Chem. Phys., 15, 10 071–10 086, doi:10.5194/acp-15-10071-2015.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 1211–1213, doi:10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., G. E. Willis, and D. K. Lilly, 1969: Laboratory investigation of non-steady penetrative convection. J. Fluid Mech., 35, 7–31, doi:10.1017/S0022112069000942.

    • Search Google Scholar
    • Export Citation
  • Dimotakis, P. E., 2000: The mixing transition in turbulent flows. J. Fluid Mech., 409, 69–98, doi:10.1017/S0022112099007946.

  • Esau, I., 2007: Amplification of turbulent exchange over wide Arctic leads: Large-eddy simulation study. J. Geophys. Res., 112, D08109, doi:10.1029/2006JD007225.

  • Fedorovich, E., 1995: Modeling the atmospheric convective boundary layer within a zero-order jump approach: An extended theoretical framework. J. Atmos. Sci., 34, 1916–1928, doi:10.1175/1520-0450(1995)034<1916:MTACBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garcia, J. R., and J. P. Mellado, 2014: The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci., 1935–1955, doi:10.1175/JAS-D-13-0148.1.

    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., and W. M. Angevine, 2002: Observations of the afternoon transition of the convective boundary layer. J. Appl. Meteor., 41, 3–11, doi:10.1175/1520-0450(2002)041<0003:OOTATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., and Coauthors, 2014: The BLLAST field experiment: Boundary-layer late afternoon and sunset turbulence. Atmos. Chem. Phys., 14, 10 931–10 960, doi:10.5194/acp-14-10931-2014.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2012: Direct numerical simulation of free convection over a heated plate. J. Fluid Mech., 712, 418–450, doi:10.1017/jfm.2012.428.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., C. C. van Heerwaarden, and J. R. Garcia, 2015: Near-surface effects of stratification above a free convective boundary layer. Bound.-Layer Meteor., 159, 69–95, doi:10.1007/s10546-015-0105-x.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., 1984: A large-eddy simulation for the study of planetary boundary layer turbulence. J. Atmos. Sci., 41, 2052–2062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morinishi, Y., T. S. Lund, O. V. Vasilyev, and P. Moin, 1998: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys., 143, 90–124, doi:10.1006/jcph.1998.5962.

    • Search Google Scholar
    • Export Citation
  • Nadeau, D. F., E. R. Pardyjak, C. W. Higgins, H. J. S. Fernando, and M. B. Parlange, 2011: A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces. Bound.-Layer Meteor., 141, 301–324, doi:10.1007/s10546-011-9645-x.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., and R. A. Brost, 1986: The decay of convective turbulence. J. Atmos. Sci., 43, 532–546, doi:10.1175/1520-0469(1986)043<0532:TDOCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Sorbjan, Z., 1997: Decay of convective turbulence revisited. Bound.-Layer Meteor., 82, 503–517, doi:10.1023/A:1000231524314.

  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 2395–2415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C. H. Moeng, B. Stevens, D. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 3042–3064, doi:10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1998: Time-scales of adjustment to radiative-convective equilibrium in the tropical atmosphere. Quart. J. Roy. Meteor. Soc., 124, 2693–2713, doi:10.1002/qj.49712455208.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1959: Temperature fluctuations over a heated horizontal surface. J. Fluid Mech., 5, 209–241, doi:10.1017/S0022112059000167.

    • Search Google Scholar
    • Export Citation
  • van Driel, R., and H. J. J. Jonker, 2011: Convective boundary layers driven by nonstationary surface heat fluxes. J. Atmos. Sci., 68, 727–738, doi:10.1175/2010JAS3643.1.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, doi:10.1029/2011MS000056.

  • Vasilyev, O. V., 2000: High order finite difference schemes on non-uniform meshes with good conservation properties. J. Comput. Phys., 157, 746–761, doi:10.1006/jcph.1999.6398.

    • Search Google Scholar
    • Export Citation
  • Williamson, J. H., 1980: Low-storage Runge-Kutta schemes. J. Comput. Phys., 35, 48–56, doi:10.1016/0021-9991(80)90033-9.

  • Zilitinkevich, S. S., 1991: Turbulent Penetrative Convection. Avebury, 199 pp.

  • Zilitinkevich, S. S., and Coauthors, 2006: The influence of large convective eddies on the surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 132, 1423–1456, doi:10.1256/qj.05.79.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 844 229 33
PDF Downloads 614 135 17