• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, doi:10.1029/2005JD006301.

  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 25822600, doi:10.1175/2010JAS3287.1.

  • Birner, T., , A. Dörnbrack, , and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29, 45-145-4, doi:10.1029/2002GL015142.

    • Search Google Scholar
    • Export Citation
  • Birner, T., , D. Sankey, , and T. G. Shepherd, 2006: The tropopause inversion layer in models and analyses. Geophys. Res. Lett., 33, L14804, doi:10.1029/2006GL026549.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. Series on Global Modeling and Data Assimilation Tech. Rep. NASA/TM–2015-104606, Vol. 43, 145 pp. [Available online at http://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/.]

  • Butler, A. H., , D. J. Seidel, , S. C. Hardiman, , N. Butchart, , T. Birner, , and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, doi:10.1175/BAMS-D-13-00173.1.

    • Search Google Scholar
    • Export Citation
  • Coy, L., , and S. Pawson, 2015: The major stratospheric sudden warming of January 2013: Analyses and forecasts in the GEOS-5 data assimilation system. Mon. Wea. Rev., 143, 491510, doi:10.1175/MWR-D-14-00023.1.

    • Search Google Scholar
    • Export Citation
  • Erler, A. R., , and V. Wirth, 2011: The static stability of the tropopause region in adiabatic baroclinic life cycle experiments. J. Atmos. Sci., 68, 11781193, doi:10.1175/2010JAS3694.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , and T. Wang, 2015: Structural diagnostics of the tropopause inversion layer and its evolution. J. Geophys. Res. Atmos., 120, 4662, doi:10.1002/2014JD021846.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , P. Hoor, , L. L. Pan, , W. J. Randel, , M. I. Hegglin, , and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, RG3003, doi:10.1029/2011RG000355.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 inst3_3d_asm_Nv: 3D IAU State, Meteorology Instantaneous 3-hourly (0.625 × 0.5L72), version 5.12.4. Goddard Space Flight Center Distributed Active Archive Center, accessed May 2015, doi:10.5067/WWQSXQ8IVFW8.

  • Grise, K. M., , D. W. J. Thompson, , and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23, 22752292, doi:10.1175/2009JCLI3369.1.

    • Search Google Scholar
    • Export Citation
  • Harada, Y., , A. Goto, , H. Hasegawa, , N. Fujikawa, , H. Naoe, , and T. Hirooka, 2010: A major stratospheric sudden warming event in January 2009. J. Atmos. Sci., 67, 20522069, doi:10.1175/2009JAS3320.1.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., , C. D. Boone, , G. L. Manney, , and K. A. Walker, 2009: A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO. J. Geophys. Res., 114, D00B11, doi:10.1029/2008JD009984.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., , K. P. Bowman, , and L. L. Pan, 2010: Extratropical tropopause transition layer characteristics from high‐resolution sounding data. J. Geophys. Res., 115, D13108, doi:10.1029/2009JD013664.

    • Search Google Scholar
    • Export Citation
  • Kunkel, D., , P. Hoor, , and V. Wirth, 2014: Can inertia-gravity waves persistently alter the tropopause inversion layer? Geophys. Res. Lett., 41, 78227829, doi:10.1002/2014GL061970.

    • Search Google Scholar
    • Export Citation
  • Kuttippurath, J., , and G. Nikulin, 2012: A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/04–2009/10. Atmos. Chem. Phys., 12, 81158129, doi:10.5194/acp-12-8115-2012.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., , K. Krüger, , J. L. Sabutis, , S. A. Sena, , and S. Pawson, 2005: The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2008: The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res., 113, D11115, doi:10.1029/2007JD009097.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2009: Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett., 36, L12815, doi:10.1029/2009GL038586.

    • Search Google Scholar
    • Export Citation
  • Molod, A., , L. Takacs, , M. Suarez, , and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, doi:10.5194/gmd-8-1339-2015.

    • Search Google Scholar
    • Export Citation
  • Peevey, T. R., , J. C. Gille, , C. R. Homeyer, , and G. L. Manney, 2014: The double tropopause and its dynamical relationship to the tropopause inversion layer in storm track regions. J. Geophys. Res. Atmos., 119, 10 19410 212, doi:10.1002/2014JD021808.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and F. Wu, 2010: The polar summer tropopause inversion layer. J. Atmos. Sci., 67, 25722581, doi:10.1175/2010JAS3430.1.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , and P. Forster, 2007: The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci., 64, 44894496, doi:10.1175/2007JAS2412.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., , G. L. Manney, , M. I. Hegglin, , N. J. Livesey, , M. L. Santee, , and W. H. Daffer, 2015: Climatology and variability of trace gases in extratropical double-tropopause regions from MLS, HIRDLS, and ACE-FTS measurements. J. Geophys. Res. Atmos., 120, 843867, doi:10.1002/2014JD021964.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., , and L. M. Polvani, 2007: Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett., 34, L17806, doi:10.1029/2007GL030564.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., , N. F. Tandon, , and L. M. Polvani, 2011: The fine‐scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements. J. Geophys. Res., 116, D20113, doi:10.1029/2011JD016030.

    • Search Google Scholar
    • Export Citation
  • Tomikawa, Y., , Y. Nishimura, , and T. Yamanouchi, 2009: Characteristics of tropopause and tropopause inversion layer in the polar region. SOLA, 5, 141144, doi:10.2151/sola.2009-036.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2003: Static stability in the extratropical tropopause region. J. Atmos. Sci., 60, 13951409, doi:10.1175/1520-0469(2003)060<1395:SSITET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2004: A dynamical mechanism for tropopause sharpening. Meteor. Z., 13, 477484, doi:10.1127/0941-2948/2004/0013-0477.

  • Wirth, V., , and T. Szabo, 2007: Sharpness of the extratropical tropopause in baroclinic life cycle experiments. Geophys. Res. Lett., 34, L02809, doi:10.1029/2006GL028369.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology—A three-dimensional science. WMO Bull., 6, 134138.

  • Zhang, Y., , S. Zhang, , C. Huang, , K. Huang, , Y. Gong, , and Q. Gan, 2015: The interaction between the tropopause inversion layer and the inertial gravity wave activities revealed by radiosonde observations at a midlatitude station. J. Geophys. Res. Atmos., 120, 80998111, doi:10.1002/2015JD023115.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 22
PDF Downloads 55 55 14

Strengthening of the Tropopause Inversion Layer during the 2009 Sudden Stratospheric Warming: A MERRA-2 Study

View More View Less
  • 1 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland
© Get Permissions
Restricted access

Abstract

The behavior of the tropopause inversion layer (TIL) during the 2009 sudden stratospheric warming (SSW) is analyzed using NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and short-term simulations with the MERRA-2 general circulation model. Consistent with previous studies, it is found that static stability in a shallow layer above the polar tropopause sharply increases following the SSW, leading to a strengthening of the high-latitude TIL. Simultaneously, the height of the thermal tropopause decreases by around 1 km. Similar behavior is also detected during other major SSW events between the years 2004 and 2013. Using an ensemble of general circulation model forecasts initialized from MERRA-2, it is demonstrated that the primary cause of the strengthening of the TIL is an increased convergence of the vertical component of the stratospheric residual circulation in response to an SSW-induced acceleration of the mean downward motion between 75° and 90°N. In addition, ~6% of the strengthening in 2009 is attributed to an enhanced anticyclonic circulation at the tropopause. A preliminary analysis indicates that during other recent SSW events there was a significant increase in the convergence of the vertical residual wind velocity throughout the middle and lower stratosphere. The static stability increase simulated by the model during the 2009 SSW is 60%–80% of that seen in MERRA-2. The underestimate is traced back to a tendency for the forecasts to underestimate the resolved planetary wave forcing on the stratosphere compared to the reanalysis.

Corresponding author address: Krzysztof Wargan, Global Modeling and Assimilation Office, Code 610.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: krzysztof.wargan-1@nasa.gov

Abstract

The behavior of the tropopause inversion layer (TIL) during the 2009 sudden stratospheric warming (SSW) is analyzed using NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and short-term simulations with the MERRA-2 general circulation model. Consistent with previous studies, it is found that static stability in a shallow layer above the polar tropopause sharply increases following the SSW, leading to a strengthening of the high-latitude TIL. Simultaneously, the height of the thermal tropopause decreases by around 1 km. Similar behavior is also detected during other major SSW events between the years 2004 and 2013. Using an ensemble of general circulation model forecasts initialized from MERRA-2, it is demonstrated that the primary cause of the strengthening of the TIL is an increased convergence of the vertical component of the stratospheric residual circulation in response to an SSW-induced acceleration of the mean downward motion between 75° and 90°N. In addition, ~6% of the strengthening in 2009 is attributed to an enhanced anticyclonic circulation at the tropopause. A preliminary analysis indicates that during other recent SSW events there was a significant increase in the convergence of the vertical residual wind velocity throughout the middle and lower stratosphere. The static stability increase simulated by the model during the 2009 SSW is 60%–80% of that seen in MERRA-2. The underestimate is traced back to a tendency for the forecasts to underestimate the resolved planetary wave forcing on the stratosphere compared to the reanalysis.

Corresponding author address: Krzysztof Wargan, Global Modeling and Assimilation Office, Code 610.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: krzysztof.wargan-1@nasa.gov
Save