• Charney, J. G., , and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, doi:10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., , and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 35283540, doi:10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stiassnie, , H. C. Graber, , O. B. Brown, , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, doi:10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, doi:10.1175/JAS-D-11-0177.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, doi:10.1175/JAS-D-10-05024.1.

    • Search Google Scholar
    • Export Citation
  • Fang, J., , and F. Zhang, 2011: Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103122, doi:10.1175/2010JAS3522.1.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., , and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, doi:10.1175/MWR-D-12-00274.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., , and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, doi:10.1002/2013MS000253.

    • Search Google Scholar
    • Export Citation
  • Kleinschmidt, E., Jr., 1951: Grundlagen einer theorie der tropischen zyklonen. Arch. Meteor. Geophys. Bioklimatol., 4A, 5372, doi:10.1007/BF02246793.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., , and F. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 12411259, doi:10.1175/JAS-D-13-0116.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: Vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , N. V. Sang, , R. K. Smith, , and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 16971714, doi:10.1002/qj.459.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , J. Persing, , and R. K. Smith, 2015: Putting to rest WISHE-ful misconceptions for tropical cyclone intensification. J. Adv. Model. Earth Syst., 7, 92109, doi:10.1002/2014MS000362.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917925, doi:10.1063/1.1699784.

  • Rotunno, R., , and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , E. A. Ritchie, , G. Holland, , J. Halverson, , and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661, doi:10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , and M. T. Montgomery, 2008: Balanced boundary layers used in hurricane models. Quart. J. Roy. Meteor. Soc., 134, 13851395, doi:10.1002/qj.296.

    • Search Google Scholar
    • Export Citation
  • Van Sang, N., , R. K. Smith, , and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, doi:10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., , and F. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, doi:10.2151/jmsj.2016-018, in press.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, doi:10.1175/JAS-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 31
PDF Downloads 81 81 16

On the Role of Surface Fluxes and WISHE in Tropical Cyclone Intensification

View More View Less
  • 1 Department of Meteorology, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania, and Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • 2 Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

The authors show that the feedback between surface wind and surface enthalpy flux is an important influence on tropical cyclone evolution, even though, as with at least some classical instability mechanisms, such a feedback is not strictly necessary. When the wind speed is artificially capped in idealized numerical experiments, storm development is slowed and storms achieve a smaller final intensity. When it is capped in simulations of an actual storm (Hurricane Edouard of 2014), the quality of the simulations is strongly compromised; for example, little development occurs when the wind speed is capped at 5 m s−1, in contrast to the category-3 hurricane shown by observations and produced by the control experiment.

Corresponding author address: Professor Fuqing Zhang, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: fzhang@psu.edu

Abstract

The authors show that the feedback between surface wind and surface enthalpy flux is an important influence on tropical cyclone evolution, even though, as with at least some classical instability mechanisms, such a feedback is not strictly necessary. When the wind speed is artificially capped in idealized numerical experiments, storm development is slowed and storms achieve a smaller final intensity. When it is capped in simulations of an actual storm (Hurricane Edouard of 2014), the quality of the simulations is strongly compromised; for example, little development occurs when the wind speed is capped at 5 m s−1, in contrast to the category-3 hurricane shown by observations and produced by the control experiment.

Corresponding author address: Professor Fuqing Zhang, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: fzhang@psu.edu
Save