Nonhydrostatic Wave Generation at Strained Fronts

Callum J. Shakespeare Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Callum J. Shakespeare in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simple analytical model is developed to describe wave generation during frontogenesis forced by a horizontal strain field. In contrast to previous models, neither geostrophic nor hydrostatic balance is assumed. The generated waves are trapped in the strain field and form steady bands of enhanced vertical flow on either side of the surface front on scales from 1 to 100 km. The predictions of the analytical model are confirmed by comparison with fully nonlinear numerical simulations.

Corresponding author address: Callum J. Shakespeare, Research School of Earth Sciences, Australian National University, 142 Mills Rd., Acton ACT 2601, Australia. E-mail: callum.shakespeare@anu.edu.au

Abstract

A simple analytical model is developed to describe wave generation during frontogenesis forced by a horizontal strain field. In contrast to previous models, neither geostrophic nor hydrostatic balance is assumed. The generated waves are trapped in the strain field and form steady bands of enhanced vertical flow on either side of the surface front on scales from 1 to 100 km. The predictions of the analytical model are confirmed by comparison with fully nonlinear numerical simulations.

Corresponding author address: Callum J. Shakespeare, Research School of Earth Sciences, Australian National University, 142 Mills Rd., Acton ACT 2601, Australia. E-mail: callum.shakespeare@anu.edu.au
Save
  • Buhler, O., and M. E. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 67–95, doi:10.1017/S0022112005004374.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24 (4), 147–160.

  • Gall, R., R. Williams, and T. Clark, 1988: Gravity waves generated during frontogenesis. J. Atmos. Sci., 45, 2204–2219, doi:10.1175/1520-0469(1988)045<2204:GWGDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 1989: Fully Lagrangian numerical solutions of unbalanced frontogenesis and frontal collapse. J. Atmos. Sci., 46, 717–739, doi:10.1175/1520-0469(1989)046<0717:FLNSOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffiths, M., and M. J. Reeder, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. I: Model solutions. Quart. J. Roy. Meteor. Soc., 122, 1153–1174, doi:10.1002/qj.49712253307.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568–596, doi:10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131–151, doi:10.1146/annurev.fl.14.010182.001023.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and F. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 11–37, doi:10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Advances in Geophysics, Vol. 24, Academic Press, 225–315, doi:10.1016/S0065-2687(08)60521-X.

    • Search Google Scholar
    • Export Citation
  • Jones, W. L., 1969: Ray tracing for internal gravity waves. J. Geophys. Res., 74, 2028–2033, doi:10.1029/JB074i008p02028.

  • Juckes, M., 1994: Quasigeostrophic dynamics of the tropopause. J. Atmos. Sci., 51, 2756–2768, doi:10.1175/1520-0469(1994)051<2756:QDOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ley, B. E., and W. R. Peltier, 1978: Wave generation and frontal collapse. J. Atmos. Sci., 35, 3–17, doi:10.1175/1520-0469(1978)035<0003:WGAFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 33–76, doi:10.1002/2012RG000419.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and M. Griffiths, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. II: Wave sources, generation mechanisms and momentum fluxes. Quart. J. Roy. Meteor. Soc., 122, 1175–1195, doi:10.1002/qj.49712253308.

    • Search Google Scholar
    • Export Citation
  • Ryan, B., and Coauthors, 2000: Simulations of a cold front by cloud-resolving, limited-area, and large-scale models, and a model evaluation using in situ and satellite observations. Mon. Wea. Rev., 128, 3218–3235, doi:10.1175/1520-0493(2000)128<3218:SOACFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1956: On the vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc. London, A234, 346–362, doi:10.1098/rspa.1956.0039.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2005: A review of cold fronts with prefrontal troughs and wind shifts. Mon. Wea. Rev., 133, 2449–2472, doi:10.1175/MWR2987.1.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. R. Taylor, 2013: A generalized mathematical model of geostrophic adjustment and frontogenesis: Uniform potential vorticity. J. Fluid Mech., 736, 366–413, doi:10.1017/jfm.2013.526.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. R. Taylor, 2014: The spontaneous generation of inertia–gravity waves during frontogenesis forced by large strain: Theory. J. Fluid Mech., 757, 817–853, doi:10.1017/jfm.2014.514.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. R. Taylor, 2015: The spontaneous generation of inertia–gravity waves during frontogenesis forced by large strain: Numerical solutions. J. Fluid Mech., 772, 508–534, doi:10.1017/jfm.2015.197.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., W. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 3194–3211, doi:10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2012: On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves. J. Fluid Mech., 711, 620–640, doi:10.1017/jfm.2012.416.

    • Search Google Scholar
    • Export Citation
  • Williams, R. T., and J. Plotkin, 1968: Quasi-geostrophic frontogenesis. J. Atmos. Sci., 25, 201–206, doi:10.1175/1520-0469(1968)025<0201:QGF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 121 67
PDF Downloads 105 37 2