Physically Based Stochastic Perturbations (PSP) in the Boundary Layer to Represent Uncertainty in Convective Initiation

Kirstin Kober Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by Kirstin Kober in
Current site
Google Scholar
PubMed
Close
and
George C. Craig Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by George C. Craig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Stochastic perturbations allow for the representation of small-scale variability due to unresolved physical processes. However, the properties of this variability depend on model resolution and weather regime. A physically based method is presented for introducing stochastic perturbations into kilometer-scale atmospheric models that explicitly account for these dependencies. The amplitude of the perturbations is based on information obtained from the model’s subgrid turbulence parameterization, while the spatial and temporal correlations are based on physical length and time scales of the turbulent motions. The stochastic perturbations lead to triggering of additional convective cells and improved precipitation amounts in simulations of two days with weak synoptic forcing of convection but different amounts of precipitation. The perturbations had little impact in a third case study, where precipitation was mainly associated with a cold front. In contrast, an unphysical version of the scheme with constant perturbation amplitude performed poorly since there was no perturbation amplitude that would give improved amounts of precipitation during the day without generating spurious convection at other times.

Corresponding author address: Kirstin Kober, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 Munich, Germany. E-mail: kirstin.kober@lmu.de

This article is included in the Waves to Weather (W2W) Special Collection.

Abstract

Stochastic perturbations allow for the representation of small-scale variability due to unresolved physical processes. However, the properties of this variability depend on model resolution and weather regime. A physically based method is presented for introducing stochastic perturbations into kilometer-scale atmospheric models that explicitly account for these dependencies. The amplitude of the perturbations is based on information obtained from the model’s subgrid turbulence parameterization, while the spatial and temporal correlations are based on physical length and time scales of the turbulent motions. The stochastic perturbations lead to triggering of additional convective cells and improved precipitation amounts in simulations of two days with weak synoptic forcing of convection but different amounts of precipitation. The perturbations had little impact in a third case study, where precipitation was mainly associated with a cold front. In contrast, an unphysical version of the scheme with constant perturbation amplitude performed poorly since there was no perturbation amplitude that would give improved amounts of precipitation during the day without generating spurious convection at other times.

Corresponding author address: Kirstin Kober, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 Munich, Germany. E-mail: kirstin.kober@lmu.de

This article is included in the Waves to Weather (W2W) Special Collection.

Save
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., T. Jung, and T. Palmer, 2012: Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Climate, 25, 49464962, doi:10.1175/JCLI-D-11-00297.1.

    • Search Google Scholar
    • Export Citation
  • Bierdel, L., P. Friederichs, and S. Bentzien, 2012: Spatial kinetic energy spectra in the convection-permitting limited-area NWP model COSMO-DE. Meteor. Z., 21, 245258, doi:10.1127/0941-2948/2012/0319.

    • Search Google Scholar
    • Export Citation
  • Bright, D. R., and S. L. Mullen, 2002: Short-range ensemble forecasts of precipitation during the southwest monsoon. Wea. Forecasting, 17, 10801100, doi:10.1175/1520-0434(2002)017<1080:SREFOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Buzzi, M., M. W. Rotach, M. Holtslag, and A. A. Holtslag, 2011: Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteor. Z., 20, 335350, doi:10.1127/0941-2948/2011/0050.

    • Search Google Scholar
    • Export Citation
  • Christensen, H., I. Moroz, and T. Palmer, 2015: Stochastic and perturbed parameter representations of model uncertainty in convection parameterization. J. Atmos. Sci., 72, 25252544, doi:10.1175/JAS-D-14-0250.1.

    • Search Google Scholar
    • Export Citation
  • Done, J., G. Craig, S. Gray, and P. A. Clark, 2012: Case-to-case variability of predictability of deep convection in a mesoscale model. Quart. J. Roy. Meteor. Soc., 138, 638648, doi:10.1002/qj.943.

    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328350, doi:10.1175/WAF843.1.

    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P., and G. Craig, 2012: Ensemble forecasting with a stochastic convective parametrization based on equilibrium statistics. Atmos. Chem. Phys., 12, 45554565, doi:10.5194/acp-12-4555-2012.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275, doi:10.1175/MWR3022.1.

    • Search Google Scholar
    • Export Citation
  • Keil, C., F. Heinlein, and G. C. Craig, 2014: The convective adjustment time-scale as indicator of predictability of convective precipitation. Quart. J. Roy. Meteor. Soc., 140, 480490, doi:10.1002/qj.2143.

    • Search Google Scholar
    • Export Citation
  • Kober, K., G. C. Craig, and C. Keil, 2014: Aspects of short-term probabilistic blending in different weather regimes. Quart. J. Roy. Meteor. Soc., 140, 11791188, doi:10.1002/qj.2220.

    • Search Google Scholar
    • Export Citation
  • Kober, K., A. M. Förster, and G. C. Craig, 2015: Examination of a stochastic and a deterministic convection parameterization in the COSMO model. Mon. Wea. Rev., 143, 40884103, doi:10.1175/MWR-D-15-0012.1.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 15521562, doi:10.1002/qj.2238.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and J. Neelin, 2003: Toward stochastic deep convective parameterization in general circulation models. Geophys. Res. Lett., 130, 1162, doi:10.1029/2002GL016203.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 2006: Predictability: A problem partly solved. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 40–58.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., L. E. Back, P. A. O’Gorman, and K. A. Emanuel, 2009: A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett., 36, L16804, doi:10.1029/2009GL039667.

    • Search Google Scholar
    • Export Citation
  • Plant, R., and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, doi:10.1175/2007JAS2263.1.

    • Search Google Scholar
    • Export Citation
  • Raschendorfer, M., 2001: The new turbulence parametrization of LM. COSMO Newsletter, No. 1, Deutscher Wetterdienst, Offenbach, Germany, 89–98.

  • Ruiz, J., and M. Pulido, 2015: Parameter estimation using ensemble-based data assimilation in the presence of model error. Mon. Wea. Rev., 143, 15681582, doi:10.1175/MWR-D-14-00017.1.

    • Search Google Scholar
    • Export Citation
  • Schraff, C., H. Reich, A. Rhodin, A. Schomburg, K. Stephan, A. Periáñez, and R. Potthast, 2016: Kilometre-scale ensemble data assimilation for the COSMO model (KENDA). Quart. J. Roy. Meteor. Soc., 142, 14531472, doi:10.1002/qj.2748.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, doi:10.1256/qj.04.106.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2015: A stochastic convective backscatter scheme for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 141, 26022616, doi:10.1002/qj.2547.

    • Search Google Scholar
    • Export Citation
  • Stephan, K., S. Klink, and C. Schraff, 2008: Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD. Quart. J. Roy. Meteor. Soc., 134, 13151326, doi:10.1002/qj.269.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and C. A. Reynolds, 2008: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev., 136, 483496, doi:10.1175/2007MWR1870.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trentmann, J., and Coauthors, 2009: Multi-model simulations of a convective situation in low-mountain terrain in central Europe. Meteor. Atmos. Phys., 103, 95103, doi:10.1007/s00703-008-0323-6.

    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2015: Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization. Quart. J. Roy. Meteor. Soc., 141, 433448, doi:10.1002/qj.2363.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2159 1093 77
PDF Downloads 564 170 15