The Role of Vertically Propagating Gravity Waves Forced by Melting-Induced Cooling in the Formation and Evolution of Wide Cold-Frontal Rainbands

Masayuki Kawashima Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

Search for other papers by Masayuki Kawashima in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Realistic mesoscale model simulations using the Weather Research and Forecasting (WRF) Model and idealized dry simulations were used to study the mechanisms responsible for the formation and evolution of wide cold-frontal rainbands (WCFRs) associated with a wintertime cyclone that moved onto the Washington coast. The WRF simulation reproduced observed characteristics of three successively formed WCFRs, including their spacing and movement as well as the timing of the formation of two WCFRs behind the first. Sensitivity experiments showed that melting-induced cooling in the stratiform precipitation area behind the surface cold front was essential for the formation of the first and second WCFRs, whereas the third WCFR was formed by the release of potential instability within an ascent forced by upper-level frontogenesis. Enhanced frontal updrafts responsible for the first and second WCFRs were created by a superposition of a broad updraft caused by frontal dynamics and upward-propagating gravity waves generated by the melting-induced cooling. The dry simulations forced by specified cooling revealed specific mechanisms for the wave generation and the evolution of the first and second WCFRs. The gravity waves were generated at the intersection of the low-level frontal zone and the melting layer, where strong vertical shear of the cross-front wind and upshear-sloped cooling by melting cooperatively enhanced the wave generation. The formation of the second WCFR behind the first and subsequent dissipation of these WCFRs was attributed to the evolution of a wave pattern associated with the evolution of cross-front flow above the frontal zone.

Corresponding author address: Masayuki Kawashima, Institute of Low Temperature Science, Hokkaido University, West 8, North 19, Kita-ku, Sapporo 060-0819, Japan. E-mail: kawasima@lowtem.hokudai.ac.jp

Abstract

Realistic mesoscale model simulations using the Weather Research and Forecasting (WRF) Model and idealized dry simulations were used to study the mechanisms responsible for the formation and evolution of wide cold-frontal rainbands (WCFRs) associated with a wintertime cyclone that moved onto the Washington coast. The WRF simulation reproduced observed characteristics of three successively formed WCFRs, including their spacing and movement as well as the timing of the formation of two WCFRs behind the first. Sensitivity experiments showed that melting-induced cooling in the stratiform precipitation area behind the surface cold front was essential for the formation of the first and second WCFRs, whereas the third WCFR was formed by the release of potential instability within an ascent forced by upper-level frontogenesis. Enhanced frontal updrafts responsible for the first and second WCFRs were created by a superposition of a broad updraft caused by frontal dynamics and upward-propagating gravity waves generated by the melting-induced cooling. The dry simulations forced by specified cooling revealed specific mechanisms for the wave generation and the evolution of the first and second WCFRs. The gravity waves were generated at the intersection of the low-level frontal zone and the melting layer, where strong vertical shear of the cross-front wind and upshear-sloped cooling by melting cooperatively enhanced the wave generation. The formation of the second WCFR behind the first and subsequent dissipation of these WCFRs was attributed to the evolution of a wave pattern associated with the evolution of cross-front flow above the frontal zone.

Corresponding author address: Masayuki Kawashima, Institute of Low Temperature Science, Hokkaido University, West 8, North 19, Kita-ku, Sapporo 060-0819, Japan. E-mail: kawasima@lowtem.hokudai.ac.jp
Save
  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487490, doi:10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2007: Momentum and energy transport by gravity waves in stochastically driven stratified flows. Part I: Radiation of gravity waves from a shear layer. J. Atmos. Sci., 64, 15091529, doi:10.1175/JAS3905.1.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., and D. B. Parsons, 1996: Microphysical processes associated with intense frontal rainbands and the effects of evaporation and melting on frontal dynamics. J. Atmos. Sci., 53, 15691586, doi:10.1175/1520-0469(1996)053<1569:MPAWIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bénard, P. J., J. L. Redelsperger, and J. P. Lafore, 1992: Nonhydrostatic simulation of frontogenesis in a moist atmosphere. Part II: Moist potential vorticity budget and wide rainbands. J. Atmos. Sci., 49, 22182235, doi:10.1175/1520-0469(1992)049<2218:NSOFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945962, doi:10.1002/qj.49710544615.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61, 324337, doi:10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1950: Über der mechanismus der ausgeibigen niederschläge. Ber. Dtsch. Wetterdienstes, 12, 225232.

  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341, doi:10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and T. W. Harrold, 1969: Air motion and precipitation growth in a wave depression. Quart. J. Roy. Meteor. Soc., 95, 288309, doi:10.1002/qj.49709540405.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and G. A. Monk, 1982: A simple model for the synoptic analysis of cold fronts. Quart. J. Roy. Meteor. Soc., 108, 435452, doi:10.1002/qj.49710845609.

    • Search Google Scholar
    • Export Citation
  • Carbone, R., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39, 258279, doi:10.1175/1520-0469(1982)039<0258:ASFRPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39, 21522158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1979: Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluids. J. Atmos. Sci., 36, 24252449, doi:10.1175/1520-0469(1979)036<2425:IIAMCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1985: Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci., 42, 10621071, doi:10.1175/1520-0469(1985)042<1062:FCITPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, C., and F. Lalaurette, 1995: Meso-β-scale circulations in realistic fronts. II: Frontogenetically forced basic states. Quart. J. Roy. Meteor. Soc., 121, 12851321, doi:10.1256/smsqj.52605.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Han, M., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and J. A. Grim, 2007: Mesoscale dynamics of the trowal and warm frontal regions of two continental winter cyclones. Mon. Wea. Rev., 135, 16471670, doi:10.1175/MWR3377.1.

    • Search Google Scholar
    • Export Citation
  • Han, M., S. A. Braun, P. O. G. Persson, and J.-W. Bao, 2009: Alongfront variability of precipitation associated with a midlatitude frontal zone: TRMM observations and MM5 simulation. Mon. Wea. Rev., 137, 10081028, doi:10.1175/2008MWR2465.1.

    • Search Google Scholar
    • Export Citation
  • Heffernan, E., and J. Marwitz, 1996: The Front Range blizzard of 1990. Part II: Melting effects in a convective band. Mon. Wea. Rev., 124, 24692482, doi:10.1175/1520-0493(1996)124<2469:TFRBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. IV: Vertical air motions and microphysical structures of prefrontal surge clouds and cold-frontal clouds. J. Atmos. Sci., 38, 17711784, doi:10.1175/1520-0469(1981)038<1771:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., 1979: Doppler radar study of a warm frontal region. J. Atmos. Sci., 36, 20932107, doi:10.1175/1520-0469(1979)036<2093:DRSOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1978: Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys. Space Phys., 16, 741755, doi:10.1029/RG016i004p00741.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and K. R. Biswas, 1979: The cellular structure of the narrow cold-frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 723727, doi:10.1002/qj.49710544516.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568596, doi:10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1996: A new conceptual model for cyclones generated in the lee of the Rocky Mountains. Bull. Amer. Meteor. Soc., 77, 11691178, doi:10.1175/1520-0477(1996)077<1169:ANCMFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., P. V. Hobbs, K. R. Biswas, and W. M. Davis, 1976: Mesoscale rainbands in extratropical cyclones. Mon. Wea. Rev., 104, 868878, doi:10.1175/1520-0493(1976)104<0868:MRIEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • James, P. K., and K. A. Browning, 1979: Mesoscale structure of line convection at surface cold fronts. Quart. J. Roy. Meteor. Soc., 105, 371382, doi:10.1002/qj.49710544404.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawashima, M., 2003: The role of gravity waves in the meso-β-scale cycle of squall-line type convective systems. J. Meteor. Soc. Japan, 81, 713746, doi:10.2151/jmsj.81.713.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, doi:10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, D. J., and P. V. Hobbs, 1988: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XV: A numerical modeling study of frontogenesis and cold-frontal rainbands. J. Atmos. Sci., 45, 915930, doi:10.1175/1520-0469(1988)045<0915:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lagouvardos, K., Y. Lemaitre, and G. Scialom, 1993: Dynamical structure of a wide cold-frontal cloudband observed during FRONTS 87. Quart. J. Roy. Meteor. Soc., 119, 12911319, doi:10.1002/qj.49711951404.

    • Search Google Scholar
    • Export Citation
  • Lemaitre, Y., and J. Testud, 1988: Relevance of conditional symmetric instability in the interpretation of wide cold frontal rainbands. A case study: 20 May 1976. Quart. J. Roy. Meteor. Soc., 114, 259269, doi:10.1002/qj.49711447913.

    • Search Google Scholar
    • Export Citation
  • Lemaitre, Y., G. Scialom, and A. Protat, 2001: Conditional symmetric instability, frontogenetic forcing and rain-band organization. Quart. J. Roy. Meteor. Soc., 127, 25992634, doi:10.1002/qj.49712757806.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 1987: Two-dimensional response of a stably stratified shear flow to diabatic heating. J. Atmos. Sci., 44, 13751393, doi:10.1175/1520-0469(1987)044<1375:TDROAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution. Mon. Wea. Rev., 117, 25752583, doi:10.1175/1520-0493(1989)117<2575:CVAHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., K. Ikeda, G. Thompson, R. Rasmussen, and J. Dudhia, 2011: High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev., 139, 35333553, doi:10.1175/MWR-D-11-00009.1.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., M. Stoelinga, and P. V. Hobbs, 2002: Organization and structure of clouds and precipitation on the mid-Atlantic coast of the United States. Part VII: Diagnosis of a nonconvective rainband associated with a cold front aloft. Mon. Wea. Rev., 130, 278297, doi:10.1175/1520-0493(2002)130<0278:OASOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., M. Stoelinga, M. F. Garvert, and P. V. Hobbs, 2005: The IMPROVE-1 storm of 12 February 2001. Part I: Development of a forward-tilted cold front and a warm occlusion. J. Atmos. Sci., 62, 34313455, doi:10.1175/JAS3548.1.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., J. D. Locatelli, and P. V. Hobbs, 1992: Organization and structure of clouds and precipitation on the mid-Atlantic coast of the United States. Part V: The role of an upper-level front in the generation of a rainband. J. Atmos. Sci., 49, 12931303, doi:10.1175/1520-0469(1992)049<1293:OASOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matejka, T. J., R. A. Houze Jr., and P. V. Hobbs, 1980: Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106, 2956, doi:10.1002/qj.49710644704.

    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169171, doi:10.1175/1520-0469(1948)005<0169:OTCOF>2.0.CO;2.

  • Mlawer, D. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nicosia, D. J., and R. H. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, doi:10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of cold season–precipitation in northeast U.S. cyclones. Wea. Forecasting, 19, 9931010, doi:10.1175/815.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flow. J. Comput. Phys., 21, 251269, doi:10.1016/0021-9991(76)90023-1.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951, doi:10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., and P. V. Hobbs, 1983a: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VII: Formation, development, interaction and dissipation of rainbands. J. Atmos. Sci., 40, 559579, doi:10.1175/1520-0469(1983)040<0559:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., and P. V. Hobbs, 1983b: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. IX: Some effects of orography on rainbands. J. Atmos. Sci., 40, 19301949, doi:10.1175/1520-0469(1983)040<1930:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., and P. V. Hobbs, 1983c: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XI: Comparison between observational and theoretical aspects of rainbands. J. Atmos. Sci., 40, 23772397, doi:10.1175/1520-0469(1983)040<2377:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pecnick, M. J., and D. Keyser, 1989: The effect of spatial resolution on the simulation of upper-tropospheric frontogenesis using a sigma-coordinate primitive-equation model. Meteor. Atmos. Phys., 40, 137149, doi:10.1007/BF01032454.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., and T. T. Warner, 1991: Model generation of spurious gravity waves due to inconsistency of the vertical and horizontal resolution. Mon. Wea. Rev., 119, 917935, doi:10.1175/1520-0493(1991)119<0917:MGOSGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 (6), 127.

  • Raymond, D. J., and R. Rotunno, 1989: Response of a stably stratified flow to cooling. J. Atmos. Sci., 46, 28302837, doi:10.1175/1520-0469(1989)046<2830:ROASSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and L. F. Bosart, 1985: Mesoscale structure in the megalopolitan snowstorm of 11–12 February 1983. Part I: Frontogenetical forcing and symmetric instability. J. Atmos. Sci., 42, 10501061, doi:10.1175/1520-0469(1985)042<1050:MSITMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, doi:10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stewart, R. E., R. W. Crawford, K. K. Szeto, and D. R. Hudak, 1996: Horizontal aircraft passes across 0°C regions within winter storms. Atmos.–Ocean, 34, 133159, doi:10.1080/07055900.1996.9649560.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., and R. E. Stewart, 1997: Effects of melting on frontogenesis. J. Atmos. Sci., 54, 689702, doi:10.1175/1520-0469(1997)054<0689:EOMOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., C. A. Lin, and R. E. Stewart, 1988: Mesoscale circulations forced by melting snow. Part II: Application to meteorological features. J. Atmos. Sci., 45, 16421650, doi:10.1175/1520-0469(1988)045<1642:MCFBMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 18091824, doi:10.1175/1520-0469(1985)042<1809:FITPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., 1992: Formation and evolution of frontal rainbands and geostrophic potential vorticity anomalies. J. Atmos. Sci., 49, 629648, doi:10.1175/1520-0469(1992)049<0629:FAEOFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 106 25
PDF Downloads 197 76 18