Sensitivity of Tornado Dynamics to Soil Debris Loading

David J. Bodine Advanced Study Program, National Center for Atmospheric Research, Boulder, Colorado
School of Meteorology, University of Oklahoma, Norman, Oklahoma
Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by David J. Bodine in
Current site
Google Scholar
PubMed
Close
,
Takashi Maruyama Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Search for other papers by Takashi Maruyama in
Current site
Google Scholar
PubMed
Close
,
Robert D. Palmer School of Meteorology, University of Oklahoma, Norman, Oklahoma
Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Robert D. Palmer in
Current site
Google Scholar
PubMed
Close
,
Caleb J. Fulton Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma

Search for other papers by Caleb J. Fulton in
Current site
Google Scholar
PubMed
Close
,
Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
, and
David C. Lewellen Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia

Search for other papers by David C. Lewellen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Past numerical simulation studies found that debris loading from sand-sized particles may substantially affect tornado dynamics, causing reductions in near-surface wind speeds up to 50%. To further examine debris loading effects, simulations are performed using a large-eddy simulation model with a two-way drag force coupling between air and sand. Simulations encompass a large range of surface debris fluxes that cause negligible to substantial impact on tornado dynamics for a high-swirl tornado vortex simulation.

Simulations are considered for a specific case with a single vortex flow type (swirl ratio, intensity, and translation velocity) and a fixed set of debris and aerodynamic parameters. Thus, it is stressed that these findings apply to the specific flow and debris parameters herein and would likely vary for different flows or debris parameters. For this specific case, initial surface debris fluxes are varied over a factor of 16 384, and debris cloud mass varies by only 42% of this range because a negative feedback reduces near-surface horizontal velocities. Debris loading effects on the axisymmetric mean flow are evident when maximum debris loading exceeds 0.1 kg kg−1, but instantaneous maximum wind speed and TKE exhibit small changes at smaller debris loadings (greater than 0.01 kg kg−1). Initially, wind speeds are reduced in a shallow, near-surface layer, but the magnitude and depth of these changes increases with higher debris loading. At high debris loading, near-surface horizontal wind speeds are reduced by 30%–60% in the lowest 10 m AGL. In moderate and high debris loading scenarios, the number and intensity of subvortices also decrease close to the surface.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David Bodine, Advanced Study Program, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80302. E-mail: dbodine@ucar.edu

Abstract

Past numerical simulation studies found that debris loading from sand-sized particles may substantially affect tornado dynamics, causing reductions in near-surface wind speeds up to 50%. To further examine debris loading effects, simulations are performed using a large-eddy simulation model with a two-way drag force coupling between air and sand. Simulations encompass a large range of surface debris fluxes that cause negligible to substantial impact on tornado dynamics for a high-swirl tornado vortex simulation.

Simulations are considered for a specific case with a single vortex flow type (swirl ratio, intensity, and translation velocity) and a fixed set of debris and aerodynamic parameters. Thus, it is stressed that these findings apply to the specific flow and debris parameters herein and would likely vary for different flows or debris parameters. For this specific case, initial surface debris fluxes are varied over a factor of 16 384, and debris cloud mass varies by only 42% of this range because a negative feedback reduces near-surface horizontal velocities. Debris loading effects on the axisymmetric mean flow are evident when maximum debris loading exceeds 0.1 kg kg−1, but instantaneous maximum wind speed and TKE exhibit small changes at smaller debris loadings (greater than 0.01 kg kg−1). Initially, wind speeds are reduced in a shallow, near-surface layer, but the magnitude and depth of these changes increases with higher debris loading. At high debris loading, near-surface horizontal wind speeds are reduced by 30%–60% in the lowest 10 m AGL. In moderate and high debris loading scenarios, the number and intensity of subvortices also decrease close to the surface.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David Bodine, Advanced Study Program, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80302. E-mail: dbodine@ucar.edu
Save
  • Anderson, R. S., and P. K. Haff, 1991: Wind modification and bed response during saltation of sand in air. Aeolian Grain Transport 1, O. E. Barndorff-Nielsen and B. B. Willetts, Eds., Acta Mechanica Supplementum, Vol. 1, Springer Vienna, 21–51, doi:10.1007/978-3-7091-6706-9_2.

  • Batt, R. G., M. P. Petach, S. A. Peabody II, and R. R. Batt, 1999: Boundary layer entrainment of sand-sized particles at high speed. J. Fluid Mech., 392, 335360, doi:10.1017/S0022112099005510.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81, 29392951, doi:10.1175/1520-0477(2000)081<2939:OOTAOC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., W.-C. Lee, M. Bell, C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 29682984, doi:10.1175/1520-0493(2003)131<2968:MDROOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2004: The vertical structure of a tornado near Happy, Texas, on 5 May 2002: High-resolution, mobile, W-band, Doppler radar observations. Mon. Wea. Rev., 132, 23252337, doi:10.1175/1520-0493(2004)132<2325:TVSOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. Houser, M. French, J. Snyder, G. Emmitt, I. PopStefanija, C. Baldi, and R. Bluth, 2014: Observations of the boundary layer near tornadoes and in supercells using a mobile, co-located, pulsed Doppler lidar and radar. J. Atmos. Oceanic Technol., 31, 302325, doi:10.1175/JTECH-D-13-00112.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, doi:10.1175/WAF-D-14-00152.1.

    • Search Google Scholar
    • Export Citation
  • Bodine, D., M. R. Kumjian, R. D. Palmer, P. L. Heinselman, and A. V. Ryzhkov, 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, doi:10.1175/WAF-D-11-00158.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524, doi:10.1175/MWR2934.1.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 1998: Wind-speed limits in numerically simulated tornadoes with suction vortices. Quart. J. Roy. Meteor. Soc., 124, 23772392, doi:10.1002/qj.49712455110.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, doi:10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gall, R. L., 1983: A linear analysis of the multiple vortex phenomenon in simulated tornadoes. J. Atmos. Sci., 40, 20102024, doi:10.1175/1520-0469(1983)040<2010:ALAOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gong, B., 2006: Large-eddy simulation of the effects of debris on tornado dynamics. Ph.D. thesis, West Virginia University, 187 pp.

  • Huang, N., G. Yue, and X. Zheng, 2008: Numerical simulation of a dust devil and the electric field in it. J. Geophys. Res., 113, D20203, doi:10.1029/2008JD010182.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 2007a: Near-surface intensification of tornado vortices. J. Atmos. Sci., 64, 21762194, doi:10.1175/JAS3965.1.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 2007b: Near-surface vortex intensification through corner flow collapse. J. Atmos. Sci., 64, 21952209, doi:10.1175/JAS3966.1.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527544, doi:10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., B. Gong, and W. S. Lewellen, 2004: Effects of debris on near-surface tornado dynamics. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 15.5. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81449.htm.]

  • Lewellen, D. C., B. Gong, and W. S. Lewellen, 2008: Effects of finescale debris on near-surface tornado dynamics. J. Atmos. Sci., 65, 32473262, doi:10.1175/2008JAS2686.1.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., D. C. Lewellen, and R. I. Sykes, 1997: Large-eddy simulation of a tornado’s interaction with the surface. J. Atmos. Sci., 54, 581605, doi:10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magsig, M. A., and J. T. Snow, 1998: Long-distance debris transport by tornadic thunderstorms. Part I: The 7 May 1995 supercell thunderstorm. Mon. Wea. Rev., 126, 14301449, doi:10.1175/1520-0493(1998)126<1430:LDDTBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T., 2011: Simulation of flying debris using a numerically generated tornado-like vortex. J. Wind Eng. Ind. Aerodyn., 99, 249256, doi:10.1016/j.jweia.2011.01.016.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T., and M. Noda, 2012: Tornado-borne debris. J. Appl. Wind Eng., 37, 124129, doi:10.5359/jawe.37.124.

  • Metzger, S. M., M. R. Balme, M. C. Towner, B. J. Bos, T. J. Ringrose, and M. R. Patel, 2011: In situ measurements of particle load and transport in dust devils. Icarus, 214, 766772, doi:10.1016/j.icarus.2011.03.013.

    • Search Google Scholar
    • Export Citation
  • Neakrase, L. D. V., and R. Greeley, 2010: Dust devils in the laboratory: Effect of surface roughness on vortex dynamics. J. Geophys. Res., 115, E05003, doi:10.1029/2009JE003465.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2012: Three-dimensional instabilities in tornado-like vortices with secondary circulations. J. Fluid Mech., 711, 61100, doi:10.1017/jfm.2012.369.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. University Press, 802 pp.

  • Richards, P. J., N. Williams, B. Laing, M. McCarty, and M. Pond, 2008: Numerical calculation of the three-dimensional motion of wind-borne debris. J. Wind Eng. Ind. Aerodyn., 96, 21882202, doi:10.1016/j.jweia.2008.02.060.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1978: A note on the stability of a cylindrical vortex sheet. J. Fluid Mech., 87, 761771, doi:10.1017/S0022112078001871.

  • Ryzhkov, A. V., D. Burgess, D. Zrnić, T. Smith, and S. Giangrande, 2002: Polarimetric analysis of a 3 May 1999 tornado. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 14.2. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47348.htm.]

  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, doi:10.1175/JAM2235.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., and Coauthors, 2012: Dual-polarization tornadic debris signatures. Part II: Comparisons and caveats. Electron. J. Oper. Meteor., 13, 138158.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev., 91, 99162, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snow, J. T., 1984: On the formation of particle sheaths in columnar vortices. J. Atmos. Sci., 41, 24772491, doi:10.1175/1520-0469(1984)041<2477:OTFOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stackpole, J. D., 1961: The effectiveness of raindrops as turbulence sensors. Preprints, Ninth Weather Radar Conf., Kansas City, MO, Amer. Meteor. Soc., 212–217.

  • Turcotte, D. L., 1986: Fractals and fragmentation. J. Geophys. Res., 91, 19211926, doi:10.1029/JB091iB02p01921.

  • Tyler, S. W., and S. W. Wheatcraft, 1989: Application of fractal mathematics to soil water retention estimation. Soil. Sci. Soc. Amer. J., 53, 987995, doi:10.2136/sssaj1989.03615995005300040001x.

    • Search Google Scholar
    • Export Citation
  • Tyler, S. W., and S. W. Wheatcraft, 1992: Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil. Sci. Soc. Amer. J., 56, 362369, doi:10.2136/sssaj1992.03615995005600020005x.

    • Search Google Scholar
    • Export Citation
  • Uchida, T., and Y. Ohya, 2003: Large-eddy simulation of turbulent airflow over complex terrain. J. Wind Eng. Ind. Aerodyn., 91, 219229, doi:10.1016/S0167-6105(02)00347-1.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 22172231, doi:10.1175/JAMC-D-14-0094.1.

    • Search Google Scholar
    • Export Citation
  • White, F. M., 1991: Viscous Fluid Flow. McGraw-Hill, 614 pp.

  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, doi:10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and M. Randall, 2001: An inexpensive, mobile, rapid-scan radar. Extended Abstracts, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P3.4. [Available online at https://ams.confex.com/ams/30radar/techprogram/paper_21577.htm.]

  • Wurman, J., J. M. Straka, and E. N. Rasmussen, 1996: Fine-scale Doppler radar observations of tornadoes. Science, 272, 17741777, doi:10.1126/science.272.5269.1774.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosbia, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, doi:10.1175/BAMS-D-13-00221.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 873 340 98
PDF Downloads 417 120 12