Dynamics Governing a Simulated Mesoscale Convective System with a Training Convective Line

John M. Peters Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by John M. Peters in
Current site
Google Scholar
PubMed
Close
and
Russ S. Schumacher Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Russ S. Schumacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This research investigates the dynamics of a simulated training line/adjoining stratiform (TL/AS) mesoscale convective system (MCS), with composite atmospheric fields used as initial and lateral boundary conditions for the simulation.

An initial forward-propagating MCS developed within a region of elevated convective instability and low-level lifting associated with warm-air advection along the terminus of the low-level jet. The environmental conditions external to the MCS continued to provide lift, moisture, and instability to the western side of the forward-propagating MCS, and these conditions were initially responsible for backbuilding on the system’s western side. Most parcels that encountered the southwestern outflow boundary were lifted insufficiently far to reach their levels of free convection (LFCs), and their LFC heights were increased by latent heating above them. These parcels continued northeastward beyond the surface outflow boundary (OFB), were gradually lifted, and initiated convection 80–100 km beyond encountering the OFB. Eventually the surface cold pool became sufficiently deep so that gradual ascent of parcels with moisture and instability over the OFB began initiating new convection close to the OFB—this drove backbuilding during the later portion of the MCS lifetime. These results disentangle the relative contributions of large-scale environmental factors and storm-scale processes on the quasi-stationary behavior of the MCS and show that both contributed to upstream backbulding at different times during the MCS life cycle.

Corresponding author address: John M. Peters, Colorado State University, Department of Atmospheric Science, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: jpeters3@atmos.colostate.edu

Abstract

This research investigates the dynamics of a simulated training line/adjoining stratiform (TL/AS) mesoscale convective system (MCS), with composite atmospheric fields used as initial and lateral boundary conditions for the simulation.

An initial forward-propagating MCS developed within a region of elevated convective instability and low-level lifting associated with warm-air advection along the terminus of the low-level jet. The environmental conditions external to the MCS continued to provide lift, moisture, and instability to the western side of the forward-propagating MCS, and these conditions were initially responsible for backbuilding on the system’s western side. Most parcels that encountered the southwestern outflow boundary were lifted insufficiently far to reach their levels of free convection (LFCs), and their LFC heights were increased by latent heating above them. These parcels continued northeastward beyond the surface outflow boundary (OFB), were gradually lifted, and initiated convection 80–100 km beyond encountering the OFB. Eventually the surface cold pool became sufficiently deep so that gradual ascent of parcels with moisture and instability over the OFB began initiating new convection close to the OFB—this drove backbuilding during the later portion of the MCS lifetime. These results disentangle the relative contributions of large-scale environmental factors and storm-scale processes on the quasi-stationary behavior of the MCS and show that both contributed to upstream backbulding at different times during the MCS life cycle.

Corresponding author address: John M. Peters, Colorado State University, Department of Atmospheric Science, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: jpeters3@atmos.colostate.edu
Save
  • Augustine, A. J., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, doi:10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beebe, R. G., and F. C. Bates, 1955: A mechanism for assisting in the release of convective instability. Mon. Wea. Rev., 83, 110, doi:10.1175/1520-0493(1955)083<0001:AMFAIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Billings, J. M., and M. D. Parker, 2012: Evolution and maintenance of the 22–23 June 2003 nocturnal convection during BAMEX. Wea. Forecasting, 27, 279300, doi:10.1175/WAF-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., H. E. Brooks, S. J. Weiss, and S. F. Corfidi, 2007: Forecasting the maintenance of quasi-linear mesoscale convective systems. Wea. Forecasting, 22, 556570, doi:10.1175/WAF1006.1.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 9971017, doi:10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., J. H. Merritt, and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11, 4146, doi:10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, doi:10.1175/2010JAS3329.1.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–358, doi:10.1175/0065-9401-28.50.323.

  • Houze, R. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654, doi:10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., and W. R. Cotton, 2007: Observational analysis of the predictability of mesoscale convective systems. Wea. Forecasting, 22, 813838, doi:10.1175/WAF1012.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and B. E. Mapes, 2001: Mesoscale processes and severe convective weather. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 71–122, doi:10.1175/0065-9401-28.50.71.

    • Search Google Scholar
    • Export Citation
  • Keene, K. M., and R. S. Schumacher, 2013: The bow and arrow mesoscale convective structure. Mon. Wea. Rev., 141, 16481672, doi:10.1175/MWR-D-12-00172.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. P., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, doi:10.1175/MWR3440.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., K. A. Browning, J. C. Nicol, D. J. Parker, E. G. Norton, A. M. Blyth, U. Corsmeier, and F. M. Perry, 2010: Multi-sensor observations of a wave beneath an impacting rear-inflow jet in an elevated mesoscale convective system. Quart. J. Roy. Meteor. Soc., 136, 17881812, doi:10.1002/qj.669.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., F. H. Glass, C. E. Graves, S. M. Rochette, and M. J. Singer, 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861878, doi:10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2012: Convective initiation in an idealized cloud model using an updraft nudging technique. Mon. Wea. Rev., 104, 36993705, doi:10.1175/MWR-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, doi:10.1175/2007JAS2507.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2004: Structures and dynamics of quasi-2D mesoscale convective systems. J. Atmos. Sci., 61, 545567, doi:10.1175/1520-0469(2004)061<0545:SADOQM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and P. J. Roebber, 2014: Synoptic control of heavy-rain-producing convective training episodes. Mon. Wea. Rev., 142, 24642482, doi:10.1175/MWR-D-13-00263.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2014: Objective categorization of heavy-rain-producing MCS synoptic types by rotated principal component analysis. Mon. Wea. Rev., 142, 17161737, doi:10.1175/MWR-D-13-00295.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015a: Mechanisms for organization and echo training in a flash-flood-producing mesoscale convective system. Mon. Wea. Rev., 143, 10581085, doi:10.1175/MWR-D-14-00070.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015b: The simulated structure and evolution of a quasi-idealized warm-season convective system with a training convective line. J. Atmos. Sci., 72, 19872010, doi:10.1175/JAS-D-14-0215.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 15431568, doi:10.1175/2008JAS2856.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moistureccumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci., 72, 25072524, doi:10.1175/JAS-D-14-0389.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, doi:10.1175/2008MWR2471.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555575, doi:10.1175/2008WAF2222173.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at doi:10.5065/D68S4MVH.]

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, doi:10.1175/WAF969.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, doi:10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and D. A. Ahijevych, 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67, 10661090, doi:10.1175/2009JAS3247.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and R. E. Carbone, 2014: Mechanisms governing the persistence and diurnal cycle of a heavy rainfall corridor. J. Atmos. Sci., 71, 41024126, doi:10.1175/JAS-D-14-0134.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory of strong, long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 688 200 28
PDF Downloads 535 163 9