Impact of Swell on Air–Sea Momentum Flux and Marine Boundary Layer under Low-Wind Conditions

Qingfang Jiang Naval Research Laboratory, Monterey, California

Search for other papers by Qingfang Jiang in
Current site
Google Scholar
PubMed
Close
,
Peter Sullivan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter Sullivan in
Current site
Google Scholar
PubMed
Close
,
Shouping Wang Naval Research Laboratory, Monterey, California

Search for other papers by Shouping Wang in
Current site
Google Scholar
PubMed
Close
,
James Doyle Naval Research Laboratory, Monterey, California

Search for other papers by James Doyle in
Current site
Google Scholar
PubMed
Close
, and
Linwood Vincent UCAR Visiting Scientist Programs, Monterey, California

Search for other papers by Linwood Vincent in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of fast-propagating swell on the air–sea momentum exchange and the marine boundary layer is examined based on multiple large-eddy simulations over a range of wind speed and swell parameters in the light-wind–fast-wave regime. A wave-driven supergeostrophic jet forms near the top of the wave boundary layer when the forwarding-pointing (i.e., negative) form drag associated with fast wind-following swell overpowers the positive surface shear stress. The magnitude of the form drag increases with the wavelength and slope and decreases with increasing wind speed, and the jet intensity in general increases with the magnitude of the surface form drag. The resulting negative vertical wind shear above the jet in turn enhances the turbulence aloft. The level of the wind maximum is found to be largely determined by the wavenumber and the ratio of the surface shear stress and form drag: the larger the magnitude of this ratio, the higher the altitude of the wind maximum.

Although the simulated wind profile often closely follows the log law in the wave boundary layer, the surface stress derived from the logarithmic wind profile is significantly larger than the actual total surface stress in the presence of swell. Therefore, the Monin–Obukhov similarity theory is generally invalid over swell-dominated ocean. This is attributed to the wave-induced contribution to momentum flux, which decays roughly exponentially in the vertical and is largely independent of local wind shear.

Corresponding author address: Qingfang Jiang, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93940-5502. E-mail: jiang@nrlmry.navy.mil

Abstract

The impact of fast-propagating swell on the air–sea momentum exchange and the marine boundary layer is examined based on multiple large-eddy simulations over a range of wind speed and swell parameters in the light-wind–fast-wave regime. A wave-driven supergeostrophic jet forms near the top of the wave boundary layer when the forwarding-pointing (i.e., negative) form drag associated with fast wind-following swell overpowers the positive surface shear stress. The magnitude of the form drag increases with the wavelength and slope and decreases with increasing wind speed, and the jet intensity in general increases with the magnitude of the surface form drag. The resulting negative vertical wind shear above the jet in turn enhances the turbulence aloft. The level of the wind maximum is found to be largely determined by the wavenumber and the ratio of the surface shear stress and form drag: the larger the magnitude of this ratio, the higher the altitude of the wind maximum.

Although the simulated wind profile often closely follows the log law in the wave boundary layer, the surface stress derived from the logarithmic wind profile is significantly larger than the actual total surface stress in the presence of swell. Therefore, the Monin–Obukhov similarity theory is generally invalid over swell-dominated ocean. This is attributed to the wave-induced contribution to momentum flux, which decays roughly exponentially in the vertical and is largely independent of local wind shear.

Corresponding author address: Qingfang Jiang, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93940-5502. E-mail: jiang@nrlmry.navy.mil
Save
  • Belcher, S. E., and J. C. R. Hunt, 1993: Turbulent flow over hills and waves. J. Fluid Mech., 251, 109148, doi:10.1017/S0022112093003350.

    • Search Google Scholar
    • Export Citation
  • Carlsson, B., A. Rutgersson, and A. Smedman, 2009: Impact of swell on simulations using a regional atmospheric climate model. Tellus, 61A, 527538, doi:10.1111/j.1600-0870.2009.00403.x.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D. V., and M. Y. Belevich, 1993: One-dimensional theory of the wave boundary layer. Bound.-Layer Meteor., 63, 6596, doi:10.1007/BF00705377.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. E., and S. E. Belcher, 1999: Turbulent shear flow over fast-moving waves. J. Fluid Mech., 386, 345371, doi:10.1017/S0022112099004383.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Three-dimensional numerical modeling of the planetary boundary layer. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 271–311.

  • Drennan, W. M., K. K. Kahma, and M. A. Donelan, 1999: On momentum flux and velocity spectra over waves. Bound.-Layer Meteor., 92, 489515, doi:10.1023/A:1002054820455.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711, doi:10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., and S. E. Belcher, 2008: Wave-driven jets in the marine atmospheric boundary layer. J. Atmos. Sci., 65, 26462660, doi:10.1175/2007JAS2562.1.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., S. E. Belcher, and P. P. Sullivan, 2010: A global climatology of wind–wave interaction. J. Phys. Oceanogr., 40, 12631282, doi:10.1175/2010JPO4377.1.

    • Search Google Scholar
    • Export Citation
  • Harris, D. L., 1966: The wave-driven wind. J. Atmos. Sci., 23, 688693, doi:10.1175/1520-0469(1966)023<0688:TWDW>2.0.CO;2.

  • Högström, U., A. Rutgersson, E. Sahlée, A. Smedman, T. Hristov, W. Drennan, and K. Kahama, 2013: Air–sea interaction features in the Baltic Sea and at a Pacific trade-wind site: An inter-comparison study. Bound.-Layer Meteor., 147, 139163, doi:10.1007/s10546-012-9776-8.

    • Search Google Scholar
    • Export Citation
  • Högström, U., E. Sahalée, A. Smedman, A. Rutgersson, E. Nilsson, K. Kahama, and W. Drennan, 2015: Surface stress over the ocean in swell-dominated conditions during moderate winds. J. Atmos. Sci., 72, 47774795, doi:10.1175/JAS-D-15-0139.1.

    • Search Google Scholar
    • Export Citation
  • Janssen, P., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 300 pp.

  • Jenkins, A. D., 1993: A simple quasi-linear model for wave generation and air–sea momentum flux. J. Phys. Oceanogr., 23, 20012018, doi:10.1175/1520-0485(1993)023<2001:ASQLMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kihara, N., H. Hanazaki, T. Mizuya, and H. Ueda, 2007: Relationship between airflow at the critical height and momentum transfer to the traveling waves. Phys. Fluids, 19, 015102, doi:10.1063/1.2409736.

    • Search Google Scholar
    • Export Citation
  • Lai, R. J., and O. H. Shemdin, 1971: Laboratory investigation of air turbulence above simple water waves. J. Geophys. Res., 76, 73347350, doi:10.1029/JC076i030p07334.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the connective boundary layer. J. Atmos. Sci., 45, 35733587, doi:10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nilsson, E. O., A. Rutgersson, A. Smedman, and P. P. Sullivan, 2012: Convective boundary layer structure in the presence of wind-following swell. Quart. J. Roy. Meteor. Soc., 138, 14761489, doi:10.1002/qj.1898.

    • Search Google Scholar
    • Export Citation
  • Rutgersson, A., and P. P. Sullivan, 2005: The effect of idealized water waves on the turbulence structure and kinetic energy budgets in the overlying airflow. Dyn. Atmos. Oceans, 38, 147171, doi:10.1016/j.dynatmoce.2004.11.001.

    • Search Google Scholar
    • Export Citation
  • Semedo, A., Ø. Saetra, A. Rutgeersson, K. K. Kahma, and H. Pettersson, 2009: Wave-induced wind in the marine boundary layer. J. Atmos. Sci., 66, 22562271, doi:10.1175/2009JAS3018.1.

    • Search Google Scholar
    • Export Citation
  • Semedo, A., K. Sušelj, A. Rutgersson, and A. Sterl, 2011: A global view on the wind sea and swell climate and variability from ERA-40. J. Climate, 24, 14611479, doi:10.1175/2010JCLI3718.1.

    • Search Google Scholar
    • Export Citation
  • Smedman, A., M. Tjernstrȍm, and U. Hȍgstrȍm, 1994: The near-neutral atmospheric boundary layer with no surface shearing stress: A case study. J. Atmos. Sci., 51, 33993411, doi:10.1175/1520-0469(1994)051<3399:TNNMAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smedman, A., M. Tjernstrȍm, U. Hȍgstrȍm, A. Rutgersson, K. K. Kahma, and H. Pettersson, 1999: A case study of air-sea interaction during swell conditions. J. Geophys. Res., 104, 25 83325 851, doi:10.1029/1999JC900213.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2002: Turbulent flow over water waves in the presence of stratification. Phys. Fluids, 14, 11821195, doi:10.1063/1.1447915.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech., 404, 4785, doi:10.1017/S0022112099006965.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, doi:10.1175/2007JAS2427.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and E. G. Patton, 2014: Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci., 71, 40014027, doi:10.1175/JAS-D-14-0095.1.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1973: The logarithmic wind profile. J. Atmos. Sci., 30, 234238, doi:10.1175/1520-0469(1973)030<0234:TLWP>2.0.CO;2.

  • Yang, D., C. Meneveau, and L. Shen, 2013: Dynamic modeling of sea-surface roughness for large-eddy simulation of wind over ocean wavefield. J. Fluid Mech., 726, 6200, doi:10.1017/jfm.2013.215.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 589 214 61
PDF Downloads 402 126 15