Predictability of Dry Convective Boundary Layers: An LES Study

Siddhartha Mukherjee Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands

Search for other papers by Siddhartha Mukherjee in
Current site
Google Scholar
PubMed
Close
,
Jerôme Schalkwijk Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands

Search for other papers by Jerôme Schalkwijk in
Current site
Google Scholar
PubMed
Close
, and
Harmen J. J. Jonker Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands

Search for other papers by Harmen J. J. Jonker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The predictability horizon of convective boundary layers is investigated in this study. Large-eddy simulation (LES) and direct numerical simulation (DNS) techniques are employed to probe the evolution of perturbations in identical twin simulations of a growing dry convective boundary layer. Error growth typical of chaotic systems is observed, marked by two phases. The first comprises an exponential error growth as , with δ0 as the initial error, δ(t) as the error at time t, and Λ as the Lyapunov exponent. This phase is independent of the perturbation wavenumber, and the perturbation energy grows following a self-similar spectral shape dominated by higher wavenumbers. The nondimensional error growth rate in this phase shows a strong dependence on the Reynolds number (Re). The second phase involves saturation of the error. Here, the error growth follows Lorenz dynamics with a slower saturation of successively larger scales. An analysis of the spectral decorrelation times reveals two regimes: an Re-independent regime for scales larger than the boundary layer height and an Re-dependent regime for scales smaller than , which are found to decorrelate substantially faster for increasing Reynolds numbers.

Corresponding author address: Harmen J. J. Jonker, Department of Geoscience and Remote Sensing, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands. E-mail: h.j.j.jonker@tudelft.nl

Abstract

The predictability horizon of convective boundary layers is investigated in this study. Large-eddy simulation (LES) and direct numerical simulation (DNS) techniques are employed to probe the evolution of perturbations in identical twin simulations of a growing dry convective boundary layer. Error growth typical of chaotic systems is observed, marked by two phases. The first comprises an exponential error growth as , with δ0 as the initial error, δ(t) as the error at time t, and Λ as the Lyapunov exponent. This phase is independent of the perturbation wavenumber, and the perturbation energy grows following a self-similar spectral shape dominated by higher wavenumbers. The nondimensional error growth rate in this phase shows a strong dependence on the Reynolds number (Re). The second phase involves saturation of the error. Here, the error growth follows Lorenz dynamics with a slower saturation of successively larger scales. An analysis of the spectral decorrelation times reveals two regimes: an Re-independent regime for scales larger than the boundary layer height and an Re-dependent regime for scales smaller than , which are found to decorrelate substantially faster for increasing Reynolds numbers.

Corresponding author address: Harmen J. J. Jonker, Department of Geoscience and Remote Sensing, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands. E-mail: h.j.j.jonker@tudelft.nl
Save
  • Chung, D., and G. Matheou, 2014: Large-eddy simulation of stratified turbulence. Part I: A vortex-based subgrid-scale model. J. Atmos. Sci., 71, 18631879, doi:10.1175/JAS-D-13-0126.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., G. Willis, and B. Stockton, 1980: Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech., 100, 4164, doi:10.1017/S0022112080001000.

    • Search Google Scholar
    • Export Citation
  • De Roode, S. R., P. G. Duynkerke, and H. J. J. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421, doi:10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 24762488, doi:10.1175/JAS-D-14-0007.1.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and Y.-H. Kuo, 2015: A new generic method for quantifying the scale predictability of the fractal atmosphere: Applications to model verification. J. Atmos. Sci., 72, 16671688, doi:10.1175/JAS-D-14-0112.1.

    • Search Google Scholar
    • Export Citation
  • Garcia, J. R., and J. P. Mellado, 2014: The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci., 71, 19351955, doi:10.1175/JAS-D-13-0148.1.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and Coauthors, 2010: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev., 3, 415444, doi:10.5194/gmd-3-415-2010.

    • Search Google Scholar
    • Export Citation
  • Jonker, H. J. J., P. Duynkerke, and J. W. M. Cuijpers, 1999: Mesoscale fluctuations in scalars generated by boundary layer convection. J. Atmos. Sci., 56, 801808, doi:10.1175/1520-0469(1999)056<0801:MFISGB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jonker, H. J. J., M. van Reeuwijk, P. Sullivan, and E. Patton, 2012: Interfacial layers in clear and cloudy atmospheric boundary layers. Turbul. Heat Mass Transfer, 7, 314, doi:10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.10.

    • Search Google Scholar
    • Export Citation
  • Jonker, H. J. J., M. van Reeuwijk, P. P. Sullivan, and E. G. Patton, 2013: On the scaling of shear-driven entrainment: A DNS study. J. Fluid Mech., 732, 150165, doi:10.1017/jfm.2013.394.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Search Google Scholar
    • Export Citation
  • Lo, K., and K. Ngan, 2015: Predictability of turbulent flow in street canyons. Bound.-Layer Meteor., 156, 191210, doi:10.1007/s10546-015-0014-z.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden–Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morss, R. E., C. Snyder, and R. Rotunno, 2009: Spectra, spatial scales, and predictability in a quasigeostrophic model. J. Atmos. Sci., 66, 31153130, doi:10.1175/2009JAS3057.1.

    • Search Google Scholar
    • Export Citation
  • Ngan, K., P. Bartello, and D. Straub, 2009: Predictability of rotating stratified turbulence. J. Atmos. Sci., 66, 13841400, doi:10.1175/2008JAS2799.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65, 10631076, doi:10.1175/2007JAS2449.1.

    • Search Google Scholar
    • Export Citation
  • Ruelle, D., and F. Takens, 1971: On the nature of turbulence. Commun. Math. Phys., 20, 167192, doi:10.1007/BF01646553.

  • Schalkwijk, J., H. J. J. Jonker, A. P. Siebesma, and F. C. Bosveld, 2015a: A year-long large-eddy simulation of the weather over Cabauw: An overview. Mon. Wea. Rev., 143, 828844, doi:10.1175/MWR-D-14-00293.1.

    • Search Google Scholar
    • Export Citation
  • Schalkwijk, J., H. J. J. Jonker, A. P. Siebesma, and E. van Meijgaard, 2015b: Weather forecasting using GPU-based large-eddy simulations. Bull. Amer. Meteor. Soc., 96, 715723, doi:10.1175/BAMS-D-14-00114.1.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128, 647677, doi:10.1256/003590002321042135.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, doi:10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tribbia, J., and D. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132, 703713, doi:10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 423 125 13
PDF Downloads 259 71 6