Numerical Archetypal Parameterization for Mesoscale Convective Systems

Jun-Ichi Yano GAME/CNRM, Météo-France, and CNRS, Toulouse, France

Search for other papers by Jun-Ichi Yano in
Current site
Google Scholar
PubMed
Close
and
Mitchell W. Moncrieff National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Mitchell W. Moncrieff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vertical shear commonly organizes atmospheric convection into coherent multiscale structures. The associated countergradient vertical transport of horizontal momentum by organized convection can enhance the wind shear and transport kinetic energy upscale. However, organized convection and its upscale effects are not represented by traditional mass-flux-based parameterizations. The present paper sets the archetypal dynamical models, originally formulated by the second author, into a parameterization context by utilizing a nonhydrostatic anelastic model with segmentally constant approximation (NAM–SCA). Using a two-dimensional framework as a starting point, NAM–SCA spontaneously generates propagating tropical squall lines in a sheared environment. High numerical efficiency is achieved through a novel compression methodology. The numerically generated archetypes produce vertical profiles of convective momentum transport that are consistent with the analytic archetype.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jun-Ichi Yano, GAME/CNRM, Météo-France, 42, Av. Gaspard Coriolis, 31057 Toulouse CEDEX 1, France. E-mail: jiy.gfder@gmail.com

Abstract

Vertical shear commonly organizes atmospheric convection into coherent multiscale structures. The associated countergradient vertical transport of horizontal momentum by organized convection can enhance the wind shear and transport kinetic energy upscale. However, organized convection and its upscale effects are not represented by traditional mass-flux-based parameterizations. The present paper sets the archetypal dynamical models, originally formulated by the second author, into a parameterization context by utilizing a nonhydrostatic anelastic model with segmentally constant approximation (NAM–SCA). Using a two-dimensional framework as a starting point, NAM–SCA spontaneously generates propagating tropical squall lines in a sheared environment. High numerical efficiency is achieved through a novel compression methodology. The numerically generated archetypes produce vertical profiles of convective momentum transport that are consistent with the analytic archetype.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jun-Ichi Yano, GAME/CNRM, Météo-France, 42, Av. Gaspard Coriolis, 31057 Toulouse CEDEX 1, France. E-mail: jiy.gfder@gmail.com
Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cho, H.-R., 1985: Rates of entrainment and detrainment of momentum of cumulus clouds. Mon. Wea. Rev., 113, 19201932, doi:10.1175/1520-0493(1985)113<1920:ROEADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, doi:10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and J. L. McBride, 1989: The physical mechanism of CISK and the free-ride balance. J. Atmos. Sci., 46, 26422648, doi:10.1175/1520-0469(1989)046<2642:TPMOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Godunov, S. K., 1959: A difference scheme for numerical computation of discontinuous solutions of equations in fluid mechanics (in Russian). Mat. Sb., 47, 271306.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., and J.-P. Lafore, 2010: A density current parameterization coupled with Emanuel’s convective scheme. Part I: The models. J. Atmos. Sci., 67, 881897, doi:10.1175/2009JAS3044.1.

    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., and A. Arakawa, 2005: Preliminary tests of multiscale modeling with a two-dimensional framework: Sensitivity to coupling methods. Mon. Wea. Rev., 133, 649662, doi:10.1175/MWR-2878.1.

    • Search Google Scholar
    • Export Citation
  • Kershaw, R., and D. Gregory, 1997: Parameterization of momentum transport by convection. I: Theory and cloud modelling results. Quart. J. Roy. Meteor. Soc., 123, 11331151, doi:10.1002/qj.49712354102.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and M. W. Moncrieff, 2015: Organized convection parameterization for the ITCZ. J. Atmos. Sci., 72, 30733096, doi:10.1175/JAS-D-15-0006.1.

    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521544, doi:10.1175/1520-0469(1989)046<0521:ANIOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and M. W. Moncrieff, 2015: Long-lived mesoscale systems in a low convective inhibition environment. Part I: Upshear propagation. J. Atmos. Sci., 72, 42974318, doi:10.1175/JAS-D-15-0073.1.

    • Search Google Scholar
    • Export Citation
  • LeVeque, R. J., 2002: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 578 pp.

  • Margolin, L. G., P. K. Smolarkiewicz, and Z. Sorbjan, 1999: Large-eddy simulation of convective boundary layers using nonoscillatory differencing. Physica D, 133, 390397, doi:10.1016/S0167-2789(99)00083-4.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1984: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 2143, doi:10.1017/S0022112084001750.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1978: The dynamical structure of two-dimensional steady convection in constant vertical shear. Quart. J. Roy. Meteor. Soc., 104, 543567, doi:10.1002/qj.49710444102.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organized steady convection and its properties. Quart. J. Roy. Meteor. Soc., 107, 2950, doi:10.1002/qj.49710745103.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850, doi:10.1002/qj.49711850703.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2010: The multiscale organization of convection at the interaction of weather and climate. Climate Dynamics: Why Does Climate Vary?, Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 3–26, doi:10.1029/2008GM000838.

  • Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336352, doi:10.1002/qj.49709841607.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373394, doi:10.1002/qj.49710243208.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and D. W. K. So, 1989: A hydrodynamical theory of conservative bounded density currents. J. Fluid Mech., 198, 177197, doi:10.1017/S0022112089000091.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case study. Quart. J. Roy. Meteor. Soc., 123, 805827, doi:10.1002/qj.49712354002.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 2006: Representing convective organization in prediction models by a hybrid strategy. J. Atmos. Sci., 63, 34043420, doi:10.1175/JAS3812.1.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and T. P. Lane, 2015: Long-lived mesoscale systems in a low–convective inhibition environment. Part II: Downshear propagation. J. Atmos. Sci., 72, 4319–4336, doi:10.1175/JAS-D-15-0074.1.

  • Moncrieff, M. W., and D. E. Waliser, 2015: Organized convection and the YOTC project. Seamless Prediction of the Earth System: From Minutes to Months, G. Brunet, S. Jones, and P. M. Ruti, Eds., WMO 1156, 283–291. [Available online at http://library.wmo.int/pmb_ged/wmo_1156_en.pdf.]

  • Moncrieff, M. W., M. A. Shapiro, J. M. Slingo, and F. Molteni, 2007: Collaborative research at the intersection of weather and climate. WMO Bull., 56, 206211.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC Virtual Global Field Campaign. Bull. Amer. Meteor. Soc., 93, 11711187, doi:10.1175/BAMS-D-11-00233.1.

    • Search Google Scholar
    • Export Citation
  • Ooyama, V. K., 1971: A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan, 26, 340.

  • Park, S., 2014: A unified convection scheme (UNICON). Part I: Formulation. J. Atmos. Sci., 71, 39023930, doi:10.1175/JAS-D-13-0233.1.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., M. W. Moncrieff, and R. C. J. Somerville, 2011: Orogenic propagating precipitation systems over the United States in a global climate model with embedded explicit convection. J. Atmos. Sci., 68, 18211840, doi:10.1175/2011JAS3699.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762, doi:10.1002/qj.49710845802.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2012: The “Year” of Tropical Convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, doi:10.1175/2011BAMS3095.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., L. Deng, X. Song, and G. Zhang, 2007: Coupling of convective momentum transport with convective heating in global climate simulations. J. Atmos. Sci., 64, 13341349, doi:10.1175/JAS3894.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M. S., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., 1998: Planetary-scale coherent structures of tropical moist convection. Aust. J. Phys., 51, 865874, doi:10.1071/P97078.

  • Yano, J.-I., 2001: Residual cumulus parameterization. Quart. J. Roy. Meteor. Soc., 127, 12611276, doi:10.1002/qj.49712757407.

  • Yano, J.-I., 2014a: Basic convective element: Bubble or plume? A historical review. Atmos. Chem. Phys., 14, 70197030, doi:10.5194/acp-14-7019-2014.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., 2014b: Formulation structure of the mass-flux convection parameterization. Dyn. Atmos. Oceans, 67, 128, doi:10.1016/j.dynatmoce.2014.04.002.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., 2015a: Scale separation. Parameterization of Atmospheric Convection, R. S. Plant and J. I. Yano, Eds., Vol. 1, World Scientific, 73–99.

  • Yano, J.-I., 2015b: Momentum transfer. Parameterization of Atmospheric Convection, R. S. Plant and J. I. Yano, Eds., Vol. 1, World Scientific, 449–479.

  • Yano, J.-I., and D. Bouniol, 2010: A minimum bulk microphysics. Atmos. Chem. Phys. Discuss., 10, 30 30530 345, doi:10.5194/acpd-10-30305-2010.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and D. Bouniol, 2011: Interactive comment on “A minimum bulk microphysics” by J.-I. Yano and D. Bouniol. Atmos. Chem. Phys. Discuss., 10, C14638C14654. [Available online at www.atmos-chem-phys-discuss.net/10/C14638/2011/.]

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and H. Baizig, 2012: Single SCA-plume dynamics. Dyn. Atmos. Oceans, 58, 6294, doi:10.1016/j.dynatmoce.2012.09.001.

  • Yano, J.-I., and T. P. Lane, 2014: Convectively generated gravity waves simulated by NAM–SCA. J. Geophys. Res. Atmos., 119, 92679289, doi:10.1002/2013JD021419.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., P. Bechtold, J.-L. Redelsperger, and F. Guichard, 2004: Wavelet-compressed representation of deep moist convection. Mon. Wea. Rev., 132, 14721486, doi:10.1175/1520-0493(2004)132<1472:WRODMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., J.-L. Redelsperger, F. Guichard, and P. Bechtold, 2005: Mode decomposition as a methodology for developing convective-scale representations in global models. Quart. J. Roy. Meteor. Soc., 131, 23132336, doi:10.1256/qj.04.44.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., P. Benard, F. Couvreux, and A. Lahellec, 2010a: NAM–SCA: Nonhydrostatic anelastic model under segmentally constant approximation. Mon. Wea. Rev., 138, 19571974, doi:10.1175/2009MWR2997.1.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., J.-F. Geleyn, and S. Malinowski, 2010b: Challenges for a new generation of regional forecast models: Workshop on Concepts for Convective Parameterizations in Large-Scale Models III: Increasing Resolution and Parameterization; Warsaw, Poland, 17–19 March 2010. Eos, Trans. Amer. Geophys. Union, 91, 232, doi:10.1029/2010EO260003.

  • Yano, J.-I., S. K. Cheedela, and G. L. Roff, 2012a: A compressed super-parameterization: Test of NAM–SCA under single-column GCM configurations. Atmos. Chem. Phys. Discuss., 12, 28 23728 303, doi:10.5194/acpd-12-28237-2012.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., H.-F. Graf, and F. Spineanu, 2012b: Meeting report: Theoretical and operational implications of atmospheric convective organization. Bull. Amer. Meteor. Soc., 93, ES39ES41, doi:10.1175/BAMS-D-11-00178.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and H.-R. Cho, 1991: Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory. J. Atmos. Sci., 48, 14831492, doi:10.1175/1520-0469(1991)048<1483:POTVTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., and Coauthors, 2006: The influence of large convective eddies on the surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 132, 14261456, doi:10.1256/qj.05.79.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 253 111 8
PDF Downloads 124 49 0