Levitation Diffusion Chamber Measurements of the Mass Growth of Small Ice Crystals from Vapor

Alexander Harrison Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Alexander Harrison in
Current site
Google Scholar
PubMed
Close
,
Alfred M. Moyle Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Alfred M. Moyle in
Current site
Google Scholar
PubMed
Close
,
Marcus Hanson Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Marcus Hanson in
Current site
Google Scholar
PubMed
Close
, and
Jerry Y. Harrington Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Jerry Y. Harrington in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A levitation diffusion chamber designed to examine the mass growth from the vapor of small ice particles (diameter < 100 μm) at ambient pressure (≃970 hPa) and low temperature (T < −30°C) is presented. The diffusion chamber is unique in that charged ice particles are levitated by an opposing voltage on the lower copper plate with lateral stability provided by button quadrupole electrodes attached to the upper copper plate. The button electrodes are far from the ice particle growth region, allowing ice particles to grow free of substrate influences. Experiments have been conducted for temperatures from −30° to −35.7°C, ice supersaturations from 2.5% to 28.6%, and over growth times ranging from 5 to 15 min. The experiments indicate that mass varies nonlinearly in time and exhibits a dependence on initial particle radius and ice supersaturation in accord with expectations from theory. In contrast to expectations from spherical capacitance theory, the derived mass growth rates do not scale linearly with radius, and derived effective shape factors (capacitance normalized with radius) are approximately 0.5. Fitting the growth data with a theoretical model indicates that growth is limited by surface kinetics with deposition coefficients ranging from 0.003 to 0.02.

Corresponding author address: Jerry Y. Harrington, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: jyh10@psu.edu

Abstract

A levitation diffusion chamber designed to examine the mass growth from the vapor of small ice particles (diameter < 100 μm) at ambient pressure (≃970 hPa) and low temperature (T < −30°C) is presented. The diffusion chamber is unique in that charged ice particles are levitated by an opposing voltage on the lower copper plate with lateral stability provided by button quadrupole electrodes attached to the upper copper plate. The button electrodes are far from the ice particle growth region, allowing ice particles to grow free of substrate influences. Experiments have been conducted for temperatures from −30° to −35.7°C, ice supersaturations from 2.5% to 28.6%, and over growth times ranging from 5 to 15 min. The experiments indicate that mass varies nonlinearly in time and exhibits a dependence on initial particle radius and ice supersaturation in accord with expectations from theory. In contrast to expectations from spherical capacitance theory, the derived mass growth rates do not scale linearly with radius, and derived effective shape factors (capacitance normalized with radius) are approximately 0.5. Fitting the growth data with a theoretical model indicates that growth is limited by surface kinetics with deposition coefficients ranging from 0.003 to 0.02.

Corresponding author address: Jerry Y. Harrington, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: jyh10@psu.edu
Save
  • Bacon, N., M. Baker, and B. Swanson, 2003: Initial stages in the morphological evolution of vapour-grown ice crystals: A laboratory investigation. Quart. J. Roy. Meteor. Soc., 129, 19031927, doi:10.1256/qj.02.04.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2004: Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514544, doi:10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2006: Measured ice crystal capacitances: The failure of the electrostatic analogy. 12th Conf. on Cloud Physics, Madison, WI, Amer. Meteor. Soc., P1.59. [Available online at https://ams.confex.com/ams/Madison2006/techprogram/paper_113510.htm.]

  • Bailey, M., and J. Hallett, 2010: Laboratory measured ice crystal capacitances and mass dimensional relations. 13th Conf. on Cloud Physics, Portland, OR, Amer. Meteor. Soc., P1.30. [Available online at https://ams.confex.com/ams/13CldPhy13AtRad/techprogram/paper_171204.htm.]

  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. Wiley Interscience, 530 pp.

  • Brown, D., S. George, C. Huang, E. Wong, K. Rider, R. Smith, and B. Kay, 1996: O condensation coefficient and the refractive index for vapor-deposited ice from molecular beam and optical interference measurements. J. Phys. Chem., 100, 49884995, doi:10.1021/jp952547j.

    • Search Google Scholar
    • Export Citation
  • Burton, W. K., N. Cabrera, and F. C. Frank, 1951: The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. Roy. Soc. London, A243, 299358, doi:10.1098/rsta.1951.0006.

    • Search Google Scholar
    • Export Citation
  • Choularton, T., and J. Latham, 1977: Measurements of the deposition coefficient for ice, and its application to cirrus seeding. Quart. J. Roy. Meteor. Soc., 103, 307318, doi:10.1002/qj.49710343608.

    • Search Google Scholar
    • Export Citation
  • Davis, E., 2010: A Button-Electrode Levitation chamber for the study of ice crystal growth under atmospheric conditions. M.S. thesis, Dept. of Meteorology, The Pennsylvania State University, 77 pp.

  • Earle, M., T. Kuhn, A. Khalizov, and J. Sloan, 2010: Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: Results from a combined experimental and modeling approach. Atmos. Chem. Phys., 10, 79457961, doi:10.5194/acp-10-7945-2010.

    • Search Google Scholar
    • Export Citation
  • Elliott, W. J., 1971: Dimensions of thermal diffusion chambers. J. Atmos. Sci., 28, 810811, doi:10.1175/1520-0469(1971)028<0810:DOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fitzgerald, J., 1970: Non-steady-state supersaturations in thermal diffusion chambers. J. Atmos. Sci., 27, 7072, doi:10.1175/1520-0469(1970)027<0070:NSSSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., M. Monier, and J.-F. Gayet, 2003: The deposition coefficient and its role for cirrus. J. Geophys. Res., 108, 4069, doi:10.1029/2001JD001558.

    • Search Google Scholar
    • Export Citation
  • Gonda, T., 1980: The growth of small ice crystals in gases of low and high pressures. J. Meteor. Soc. Japan, 54, 233239.

  • Gonda, T., and J. Namba, 1981: Effect of the diffusion field of water vapor and the crystal size on the morphology of ice crystals grown from the vapor phase. J. Cryst. Growth, 52, 6063, doi:10.1016/0022-0248(81)90169-X.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., D. Lamb, and R. Carver, 2009: Parameterization of surface kinetic effects for bulk microphysical models: Influences on simulated cirrus dynamics and structure. J. Geophys. Res., 114, D06212, doi:10.1029/2008JD011050.

    • Search Google Scholar
    • Export Citation
  • Haynes, D., N. Tro, and S. George, 1992: Condensation and evaporation of O on ice surfaces. J. Phys. Chem., 96, 85028509, doi:10.1021/j100200a055.

    • Search Google Scholar
    • Export Citation
  • Hu, D., and B. Makin, 1991: Study of a five-electrode quadrupole levitation. Part 1: Theoretical aspects. Proc. IEEE, 138, 320336, doi:10.1049/ip-a-3.1991.0047.

    • Search Google Scholar
    • Export Citation
  • Kay, J., and R. Wood, 2008: Timescale analysis of aerosol sensitivity during homogeneous freezing and implications for upper tropospheric water vapor budgets. Geophys. Res. Lett., 35, L10809, doi:10.1029/2007GL032628.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V., H. Morrison, J. Curry, D. Baumgardner, and P. Lawson, 2006: High supersaturation and modes of ice nucleation in thin tropopause cirrus: Simulations of the 13 July 2002 Cirrus Regional Study of Tropical Anvils and Cirrus Layers case. J. Geophys. Res., 111, D02201, doi:10.1029/2004JD005235.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., 2000: Crystal growth: 2-D or not 2-D? Proc. 13th Int. Conf. on Clouds and Precipitation, Reno, NV, International Commission on Clouds and Precipitation, 9.36.

  • Lamb, D., and W. Scott, 1972: Linear growth rates of ice crystals grown from the vapor phase. J. Cryst. Growth, 12, 2131, doi:10.1016/0022-0248(72)90333-8.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., and W. Scott, 1974: The mechanism of ice crystal growth and habit formation. J. Atmos. Sci., 31, 570580, doi:10.1175/1520-0469(1974)031<0570:TMOICG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Chen, 1995: An expanded parameterization of growth of ice crystals by vapor deposition. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 389–392.

  • Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 584 pp.

  • Lewis, B., 1974: The growth of crystals of low supersaturation: I. Theory. J. Cryst. Growth, 21, 2939, doi:10.1016/0022-0248(74)90146-8.

    • Search Google Scholar
    • Export Citation
  • Libbrecht, K., 2003: Growth rates of the principal facets of ice between −10°C and −40°C. J. Cryst. Growth, 247, 530540, doi:10.1016/S0022-0248(02)01996-6.

    • Search Google Scholar
    • Export Citation
  • Lin, R.-F., D. O. C. Starr, P. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, and X. Liu, 2002: Cirrus parcel model comparison project. Phase I: The critical components to simulation cirrus initiation explicitly. J. Atmos. Sci., 59, 23052329, doi:10.1175/1520-0469(2002)059<2305:CPMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magee, N., A. Moyle, and D. Lamb, 2006: Experimental determination of the deposition coefficient of small cirrus-like crystals near −50°C. Geophys. Res. Lett., 33, L17813, doi:10.1029/2006GL026665.

    • Search Google Scholar
    • Export Citation
  • Magee, N., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of ice crystals pervasive across a wind range of ice crystal conditions. Atmos. Chem. Phys., 14, 12 35712 371, doi:10.5194/acp-14-12357-2014.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, doi:10.1175/JAS3980.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., 1993: Heat conduction problems in crystal growth from the vapor. J. Cryst. Growth, 132, 538550, doi:10.1016/0022-0248(93)90082-8.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., and M. Baker, 1996: New theoretical framework for studies of vapor growth and sublimation of small ice crystals in the atmosphere. J. Geophys. Res., 101, 70337047, doi:10.1029/95JD03162.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., and C. Knight, 1998: Snow crystal habit changes explained by layer nucleation. J. Atmos. Sci., 55, 14521465, doi:10.1175/1520-0469(1998)055<1452:SCHCEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pratte, P., H. van den Bergh, and M. Rossi, 2006: The kinetics of O vapor condensation and evaporation on different types of ice in the range of 130–210 K. J. Phys. Chem., 110, 30423058, doi:10.1021/jp053974s.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Sei, T., and T. Gonda, 1989: The growth mechanism and the habit change of ice crystals growing from the vapor phase. J. Cryst. Growth, 94, 697707, doi:10.1016/0022-0248(89)90094-8.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., and D. Lamb, 1999: Experimental determination of the thermal accommodation and condensation coefficients of water. J. Chem. Phys., 111, 10 65910 663, doi:10.1063/1.480419.

    • Search Google Scholar
    • Export Citation
  • Skrotzki, J., and Coauthors, 2013: The accommodation coefficient of water molecules on ice–cirrus cloud studies at the AIDA simulation chamber. Atmos. Chem. Phys., 13, 44514466, doi:10.5194/acp-13-4451-2013.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325362, doi:10.1016/0021-9991(84)90121-9.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140, 459480, doi:10.1006/jcph.1998.5901.

    • Search Google Scholar
    • Export Citation
  • Swanson, B. D., N. Bacon, E. J. Davis, and M. B. Baker, 1999: Electrodynamic trapping and manipulation of ice crystals. Quart. J. Roy. Meteor. Soc., 125, 10391058, doi:10.1002/qj.49712555514.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, and A. J. Illingworth, 2008: The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65, 206219, doi:10.1175/2007JAS2315.1.

    • Search Google Scholar
    • Export Citation
  • Wood, S., M. Baker, and D. Calhoun, 2001: New model for the vapor growth of hexagonal ice crystals in the atmosphere. J. Geophys. Res., 106, 48454870, doi:10.1029/2000JD900338.

    • Search Google Scholar
    • Export Citation
  • Xue, H., A. M. Moyle, N. Magee, J. Harrington, and D. Lamb, 2005: Experimental studies of droplet evaporation kinetics: Validation of models for binary and ternary aqueous solutions. J. Atmos. Sci., 62, 43104326, doi:10.1175/JAS3623.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor diffusion. J. Atmos. Sci., 71, 372390, doi:10.1175/JAS-D-13-0103.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Harrington, 2015: The effects of surface kinetics on crystal growth and homogeneous freezing in parcel simulations of cirrus. J. Atmos. Sci., 72, 29292946, doi:10.1175/JAS-D-14-0285.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 359 121 7
PDF Downloads 247 94 4