Dynamics of Upper-Level Frontogenesis in Baroclinic Waves

Mankin Mak Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Mankin Mak in
Current site
Google Scholar
PubMed
Close
,
Yi Lu School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Yi Lu in
Current site
Google Scholar
PubMed
Close
, and
Yi Deng School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Yi Deng in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper reports a diagnosis of the structure and dynamics of upper-level fronts (ULFs) simulated with a high-resolution Weather Research and Forecasting Model with diabatic heating versus one without diabatic heating. The ULFs of both simulations develop in about 6 days as integral parts of intensifying baroclinic waves. Each has a curvilinear structure along the southern edge of a relatively narrow long tongue of high potential vorticity in which stratospheric air is subducted to different tropospheric levels by synoptic-scale subsidence. It resembles a veil in the sky of varying thickness across the midsection upstream of the trough of the baroclinic wave.

The 3D frontogenetical function is shown to be a necessary and sufficient metric for quantifying the rate of development of ULFs. Its value is mostly associated with the contribution of the 3D ageostrophic velocity component. Upper-level frontogenesis is attributable to the joint direct influence of the vortex-stretching process and the deformation property of the 3D ageostrophic flow component. The model also generates a spectrum of vertically propagating mesoscale gravity waves. The ULFs simulated with and without diabatic heating processes are qualitatively similar. The ULF is considerably more intense when there is heating. The heating, however, does not make a significant direct contribution to but indirectly does so through its impacts on the subsidence field of the baroclinic wave.

Corresponding author address: Mankin Mak, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: m-mak@illinois.edu

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0206.1 and http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0244.1

Abstract

This paper reports a diagnosis of the structure and dynamics of upper-level fronts (ULFs) simulated with a high-resolution Weather Research and Forecasting Model with diabatic heating versus one without diabatic heating. The ULFs of both simulations develop in about 6 days as integral parts of intensifying baroclinic waves. Each has a curvilinear structure along the southern edge of a relatively narrow long tongue of high potential vorticity in which stratospheric air is subducted to different tropospheric levels by synoptic-scale subsidence. It resembles a veil in the sky of varying thickness across the midsection upstream of the trough of the baroclinic wave.

The 3D frontogenetical function is shown to be a necessary and sufficient metric for quantifying the rate of development of ULFs. Its value is mostly associated with the contribution of the 3D ageostrophic velocity component. Upper-level frontogenesis is attributable to the joint direct influence of the vortex-stretching process and the deformation property of the 3D ageostrophic flow component. The model also generates a spectrum of vertically propagating mesoscale gravity waves. The ULFs simulated with and without diabatic heating processes are qualitatively similar. The ULF is considerably more intense when there is heating. The heating, however, does not make a significant direct contribution to but indirectly does so through its impacts on the subsidence field of the baroclinic wave.

Corresponding author address: Mankin Mak, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: m-mak@illinois.edu

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0206.1 and http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0244.1

Save
  • American Meteorological Society, 2012: “Upper front.” Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Upper_front.]

  • Bluestein, H. B., 1993: Synoptic–Dynamic Meteorology in Midlatitudes. Vol. 2. Oxford University Press. 594 pp.

  • Buzzi, A., T. Nanni, and M. Tagliazucca, 1977: Mid-tropospheric frontal zones: Numerical experiments with an isentropic coordinate primitive equation model. Arch. Meteor. Geophys. Bioklimatol., A26, 155178, doi:10.1007/BF02247160.

    • Search Google Scholar
    • Export Citation
  • Buzzi, A., A. Trevisan, and G. Salustri, 1981: Internal frontogenesis: A two-dimensional model in isentropic, semi-geostrophic coordinates. Mon. Wea. Rev., 109, 10531060, doi:10.1175/1520-0493(1981)109<1053:IFATDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1968: Stratospheric–tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25, 502518, doi:10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heckley, W. A., and B. J. Hoskins, 1982: Baroclinic waves and frontogenesis in a non-uniform potential vorticity semi-geostrophic model. J. Atmos. Sci., 39, 19992016, doi:10.1175/1520-0469(1982)039<1999:BWAFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., and C. R. Mechoso, 1991: Frontogenesis processes in the middle and upper troposphere. Mon. Wea. Rev., 119, 12251241, doi:10.1175/1520-0493(1991)119<1225:FPITMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1972: Non-Boussinesq effects and further development in a model of upper-tropospheric frontogenesis. Quart. J. Roy. Meteor. Soc., 98, 532541, doi:10.1002/qj.49709841705.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, doi:10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jewell, R., 1994: The integrity at work in the Bergen School of Meteorology. The Life Cycles of Extratropical Cyclones: Proceedings of an International Symposium, S. Grønås and M. A. Shapiro, Eds., Vol. 1, University of Bergen Geophysical Institute, 32–37.

  • Keyser, D., and M. J. Pecnick, 1985a: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci., 42, 12591282, doi:10.1175/1520-0469(1985)042<1259:ATDPEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. J. Pecnick, 1985b: Diagnosis of ageostrophic circulations in a two-dimensional primitive equation model of frontogenesis. J. Atmos. Sci., 42, 12831305, doi:10.1175/1520-0469(1985)042<1283:DOACIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, doi:10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mak, M., 2014: Life cycle of fronts: Intrinsic dynamics in a 3D semi-geostrophic model. Quart. J. Roy. Meteor. Soc., 140, 22112222, doi:10.1002/qj.2290.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Mudrick, S. E., 1974: A numerical study of frontogenesis. J. Atmos. Sci., 31, 869892, doi:10.1175/1520-0469(1974)031<0869:ANSOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1958: Variations in frontal structure of upper level troughs. Geophysica, 6, 357375.

  • Nieman, P. J., F. M. Ralph, M. A. Shapiro, B. F. Smull, and D. Johnson, 1998: An observational study of fronts and frontal mergers over the continental United States. Mon. Wea. Rev., 126, 25212553, doi:10.1175/1520-0493(1998)126<2521:AOSOFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226237, doi:10.1175/1520-0469(1955)012<0226:ASOACT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and F. Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338349, doi:10.1175/1520-0469(1953)010<0338:AIOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. F. Danielsen, 1958: Fronts in the vicinity of the tropopause. Arch. Meteor. Geophys. Bioklimatol., A11, 117, doi:10.1007/BF02247637.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., W. C. Skamarock, and C. Snyder, 1994: An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci., 51, 33733398, doi:10.1175/1520-0469(1994)051<3373:AAOFIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1978: Further evidence of the mesoscale and turbulent structure of upper level jet stream–frontal zone system. Mon. Wea. Rev., 106, 11001111, doi:10.1175/1520-0493(1978)106<1100:FEOTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream–frontal zone system. J. Atmos. Sci., 38, 954973, doi:10.1175/1520-0469(1981)038<0954:FAGFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., T. Hample, and D. W. van de Kamp, 1984: Radar wind profiler observations fronts and jet streams. Mon. Wea. Rev., 112, 12631266, doi:10.1175/1520-0493(1984)112<1263:RWPOOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929952, doi:10.1175/JAS-D-13-0171.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457, doi:10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1014 577 218
PDF Downloads 577 197 6