Vertical Momentum Transports Associated with Moist Convection and Gravity Waves in a Minimal Model of QBO-like Oscillation

Eriko Nishimoto Department of Geophysics, Kyoto University, Kyoto, Japan

Search for other papers by Eriko Nishimoto in
Current site
Google Scholar
PubMed
Close
,
Shigeo Yoden Department of Geophysics, Kyoto University, Kyoto, Japan

Search for other papers by Shigeo Yoden in
Current site
Google Scholar
PubMed
Close
, and
Hoang-Hai Bui Hanoi University of Science, Vietnam National University, Hanoi, Vietnam

Search for other papers by Hoang-Hai Bui in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A self-sustained oscillation dynamically analogous to the equatorial quasi-biennial oscillation (QBO) was obtained as a radiative–moist-convective quasi-equilibrium state in a minimal model of the stratosphere–troposphere coupled system, which is a two-dimensional cloud-system-resolving nonhydrostatic model with a periodic lateral boundary condition. The QBO-like oscillation shows downward propagation of the zonal mean signals in the stratosphere. In addition, in the troposphere there are periodic variations associated with the QBO-like oscillation, including organized features of moist-convective systems characterized as squall-line- or back-building-type precipitation patterns. Details of the momentum budget variation are examined to study the stratosphere–troposphere dynamical coupling associated with the QBO-like oscillation. The vertical flux of horizontal momentum is separated into three contributions of convective momentum transport (CMT) and momentum transports by upward- and downward-propagating gravity waves—that is, upward and downward gravity wave momentum transports (GWMTs)—and the time–height variations of each contribution are evaluated quantitatively. The method is based on the linear theory of gravity waves to separate upward- and non-upward-propagating contributions and uses the phase speed spectra of the total cloud mixing ratio to identify the CMT contribution. The upward GWMT predominates in the stratosphere and contributes to the acceleration of the zonal mean zonal wind. The CMT and downward GWMT are confined to the troposphere, and the former predominates. The variations of the mean zonal wind modulate the organization of convective systems, and the squall-line- and back-building-type patterns appear alternately. According to the modulation of convective systems, the spectral features of every momentum transport vary periodically.

Corresponding author address: Eriko Nishimoto, Department of Geophysics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. E-mail: eriko@kugi.kyoto-u.ac.jp

Abstract

A self-sustained oscillation dynamically analogous to the equatorial quasi-biennial oscillation (QBO) was obtained as a radiative–moist-convective quasi-equilibrium state in a minimal model of the stratosphere–troposphere coupled system, which is a two-dimensional cloud-system-resolving nonhydrostatic model with a periodic lateral boundary condition. The QBO-like oscillation shows downward propagation of the zonal mean signals in the stratosphere. In addition, in the troposphere there are periodic variations associated with the QBO-like oscillation, including organized features of moist-convective systems characterized as squall-line- or back-building-type precipitation patterns. Details of the momentum budget variation are examined to study the stratosphere–troposphere dynamical coupling associated with the QBO-like oscillation. The vertical flux of horizontal momentum is separated into three contributions of convective momentum transport (CMT) and momentum transports by upward- and downward-propagating gravity waves—that is, upward and downward gravity wave momentum transports (GWMTs)—and the time–height variations of each contribution are evaluated quantitatively. The method is based on the linear theory of gravity waves to separate upward- and non-upward-propagating contributions and uses the phase speed spectra of the total cloud mixing ratio to identify the CMT contribution. The upward GWMT predominates in the stratosphere and contributes to the acceleration of the zonal mean zonal wind. The CMT and downward GWMT are confined to the troposphere, and the former predominates. The variations of the mean zonal wind modulate the organization of convective systems, and the squall-line- and back-building-type patterns appear alternately. According to the modulation of convective systems, the spectral features of every momentum transport vary periodically.

Corresponding author address: Eriko Nishimoto, Department of Geophysics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. E-mail: eriko@kugi.kyoto-u.ac.jp
Save
  • Alexander, M. J., and J. R. Holton, 1997: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54, 408419, doi:10.1175/1520-0469(1997)054<0408:AMSOZF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52, 22122226, doi:10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179, doi:10.1029/1999RG000073.

  • Collimore, C. C., M. H. Hitchman, and D. W. Martin, 1998: Is there a quasi-biennial oscillation in tropical deep convection? Geophys. Res. Lett., 25, 333336, doi:10.1029/97GL03722.

    • Search Google Scholar
    • Export Citation
  • Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568, doi:10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy by mountain waves. Geofys. Publ., 22 (3), 94101.

  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 14271442, doi:10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., H. Tanaka, and D. C. Fritts, 1975: Production of turbulence in the vicinity of critical levels for internal gravity waves. J. Atmos. Sci., 32, 21252135, doi:10.1175/1520-0469(1975)032<2125:POTITV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., S. Osprey, and N. Butchart, 2015: Modeling the stratosphere’s “heartbeat.” Eos, Trans. Amer. Geophys. Union, 96, 1618, doi:10.1029/2015EO032301.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, doi:10.1175/BAMS-86-11-1609.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, doi:10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, doi:10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and S. Yoden, 1998: Wave–mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci., 55, 502526, doi:10.1175/1520-0469(1998)055<0502:WMFIAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1983: Dynamical processes in the atmosphere and the use of models. Quart. J. Roy. Meteor. Soc., 109, 121, doi:10.1002/qj.49710945902.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and M. W. Moncrieff, 2010: Characterization of momentum transport associated with organized moist convection and gravity waves. J. Atmos. Sci., 67, 32083225, doi:10.1175/2010JAS3418.1.

    • Search Google Scholar
    • Export Citation
  • Liess, S., and M. A. Geller, 2012: On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res., 117, D03108, doi:10.1029/2011JD016317.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Dynamics in Atmospheric Physics: Lecture Notes for an Introductory Graduate-Level Course. Cambridge University Press, 310 pp.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, doi:10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2001: Cumulus ensembles in shear: Implications for parameterization. J. Atmos. Sci., 58, 28322842, doi:10.1175/1520-0469(2001)058<2832:CEISIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850, doi:10.1002/qj.49711850703.

    • Search Google Scholar
    • Export Citation
  • Nie, J., and A. H. Sobel, 2015: Responses of tropical deep convection to the QBO: Cloud-resolving simulations. J. Atmos. Sci., 72, 36253638, doi:10.1175/JAS-D-15-0035.1.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., 1999: Hierarchical organization of super cloud cluster caused by WISHE, convectively induced gravity waves and cold pool. J. Meteor. Soc. Japan, 77, 907927.

    • Search Google Scholar
    • Export Citation
  • Piani, C., D. Durran, M. J. Alexander, and J. R. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57, 36893702, doi:10.1175/1520-0469(2000)057<3689:ANSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1977: The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci., 34, 18471858, doi:10.1175/1520-0469(1977)034<1847:TIOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1984: The quasi-biennial oscillation. Dynamics of the Middle Atmosphere, J. R. Holton and T. Matsuno, Eds., Terra Scientific Publishing Company, 217–251.

  • Plumb, R. A., and A. D. McEwan, 1978: The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci., 35, 18271839, doi:10.1175/1520-0469(1978)035<1827:TIOAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and T. P. Lane, 2013: Toward an understanding of vertical momentum transports in cloud-system-resolving model simulations of multiscale tropical convection. J. Atmos. Sci., 70, 32313247, doi:10.1175/JAS-D-13-068.1.

    • Search Google Scholar
    • Export Citation
  • Shige, S., 1999: Disturbances of 1–2 hour-periods observed in the tropical lower troposphere during the TOGA-COARE IOP. J. Meteor. Soc. Japan, 77, 11231136.

    • Search Google Scholar
    • Export Citation
  • Shige, S., and T. Satomura, 2001: Westward generation of eastward-moving tropical convective bands in TOGA COARE. J. Atmos. Sci., 58, 37243740, doi:10.1175/1520-0469(2001)058<3724:WGOEMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Takahashi, M., 1993: A QBO-like oscillation in a two-dimensional model derived from a GCM. J. Meteor. Soc. Japan, 71, 641654.

  • Watanabe, S., and Y. Kawatani, 2012: Sensitivity of the QBO to mean tropical upwelling under a changing climate simulated with an earth system model. J. Meteor. Soc. Japan, 90A, 351360, doi:10.2151/jmsj.2012-A20.

    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., and P. K. Smolarkiewicz, 2006: Direct numerical simulation of the Plumb–McEwan laboratory analog of the QBO. J. Atmos. Sci., 63, 32263252, doi:10.1175/JAS3815.1.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., and J. R. Holton, 1988: A new look at equatorial quasi-biennial oscillation models. J. Atmos. Sci., 45, 27032717, doi:10.1175/1520-0469(1988)045<2703:ANLAEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., H.-H. Bui, and E. Nishimoto, 2014: A minimal model of QBO-like oscillation in a stratosphere–troposphere coupled system under a radiative–moist convective quasi-equilibrium state. SOLA, 10, 112116, doi:10.2151/sola.2014-023.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 431 157 69
PDF Downloads 165 26 2