Aerosol–Stratocumulus–Radiation Interactions over the Southeast Pacific: Implications to the Underlying Air–Sea Coupling

Guoxing Chen Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Guoxing Chen in
Current site
Google Scholar
PubMed
Close
and
Wei-Chyung Wang Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Wei-Chyung Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recently, Chen et al. used a combination of observations and WRF simulations to illustrate that the anthropogenic aerosol–cloud microphysics–radiation interactions over the southeast Pacific can potentially reduce the excessive shortwave radiation reaching the sea surface, a common bias identified in CMIP5 models. Here, with the aid of a mixed-layer ocean, the authors further study the implications of the shortwave radiation reduction to the underlying air–sea coupling, focusing on the SST sensitivity to the changes. Results show that responses of the air–sea coupling include two negative feedbacks (a large decrease in the latent heat flux and a small decrease in the sensible heat flux, both associated with the surface cooling) and a positive feedback (an increase in the cloud cover, caused by the increase in the relative humidity within the boundary layer, especially during the daytime). The 0.1°C (W m−2)−1 SST sensitivity is about half that documented in CMIP5 models. In addition, an effective daytime cloud fraction weighted with the solar diurnal cycle is proposed to facilitate diagnosing the intensity of cloud–radiation interactions in general circulation models.

Corresponding author address: Wei-Chyung Wang, Atmospheric Sciences Research Center, University at Albany, State University of New York, 251 Fuller Road, Albany, NY 12203. E-mail: wcwang@albany.edu

Abstract

Recently, Chen et al. used a combination of observations and WRF simulations to illustrate that the anthropogenic aerosol–cloud microphysics–radiation interactions over the southeast Pacific can potentially reduce the excessive shortwave radiation reaching the sea surface, a common bias identified in CMIP5 models. Here, with the aid of a mixed-layer ocean, the authors further study the implications of the shortwave radiation reduction to the underlying air–sea coupling, focusing on the SST sensitivity to the changes. Results show that responses of the air–sea coupling include two negative feedbacks (a large decrease in the latent heat flux and a small decrease in the sensible heat flux, both associated with the surface cooling) and a positive feedback (an increase in the cloud cover, caused by the increase in the relative humidity within the boundary layer, especially during the daytime). The 0.1°C (W m−2)−1 SST sensitivity is about half that documented in CMIP5 models. In addition, an effective daytime cloud fraction weighted with the solar diurnal cycle is proposed to facilitate diagnosing the intensity of cloud–radiation interactions in general circulation models.

Corresponding author address: Wei-Chyung Wang, Atmospheric Sciences Research Center, University at Albany, State University of New York, 251 Fuller Road, Albany, NY 12203. E-mail: wcwang@albany.edu
Save
  • Abel, S. J., D. N. Walters, and G. Allen, 2010: Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx. Atmos. Chem. Phys., 10, 10 54110 559, doi:10.5194/acp-10-10541-2010.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, A. Gadian, and R. Burton, 2012: Limited-area modelling of stratocumulus over South-Eastern Pacific. Atmos. Chem. Phys., 12, 35113526, doi:10.5194/acp-12-3511-2012.

    • Search Google Scholar
    • Export Citation
  • Boo, K.-O., B. B. B. Booth, Y.-H. Byun, J. Lee, C. Cho, S. Shim, and K.-T. Kim, 2015: Influence of aerosols in multidecadal SST variability simulations over the North Pacific. J. Geophys. Res. Atmos., 120, 517531, doi:10.1002/2014JD021933.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, doi:10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., S. P. de Szoeke, S. E. Yuter, M. Wilbanks, and W. A. Brewer, 2013: Ship-based observations of the diurnal cycle of Southeast Pacific marine stratocumulus clouds and precipitation. J. Atmos. Sci., 70, 38763894, doi:10.1175/JAS-D-13-01.1.

    • Search Google Scholar
    • Export Citation
  • Calisto, M., D. Folini, M. Wild, and L. Bengtsson, 2014: Cloud radiative forcing intercomparison between fully coupled CMIP5 models and CERES satellite data. Ann. Geophys., 32, 793807, doi:10.5194/angeo-32-793-2014.

    • Search Google Scholar
    • Export Citation
  • Chen, G., W.-C. Wang, and J.-P. Chen, 2015: Aerosol–stratocumulus–radiation interactions over the southeast Pacific. J. Atmos. Sci., 72, 26122621, doi:10.1175/JAS-D-14-0319.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J. P., and S. T. Liu, 2004: Physically based two-moment bulkwater parametrization for warm-cloud microphysics. Quart. J. Roy. Meteor. Soc., 130, 5178, doi:10.1256/qj.03.41.

    • Search Google Scholar
    • Export Citation
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2007: A modelling study of aerosol impacts on cloud microphysics and radiative properties. Quart. J. Roy. Meteor. Soc., 133, 283297, doi:10.1002/qj.25.

    • Search Google Scholar
    • Export Citation
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmos. Res., 96, 461476, doi:10.1016/j.atmosres.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Diehl, T., A. Heil, M. Chin, X. Pan, D. Streets, M. Schultz, and S. Kinne, 2012: Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos. Chem. Phys. Discuss., 12, 24 89524 954, doi:10.5194/acpd-12-24895-2012.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., 2014: Do sophisticated parameterizations of aerosol-cloud interactions in CMIP5 models improve the representation of recent observed temperature trends? J. Geophys. Res. Atmos., 119, 817832, doi:10.1002/2013JD020511.

    • Search Google Scholar
    • Export Citation
  • European Centre for Medium-Range Weather Forecasts, 2012: ERA-Interim project, monthly means. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 6 March 2015, doi:10.5065/D68050NT.

  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Granier, C., and Coauthors, 2011: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109, 163190, doi:10.1007/s10584-011-0154-1.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129, 357377, doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hazra, A., V. Mandal, and J.-P. Chen, 2013: Study of cloud microphysical properties over India during CAIPEEX using a mesoscale model with new cloud microphysical scheme—Part I. J. Atmos. Sol.-Terr. Phys., 93, 2944, doi:10.1016/j.jastp.2012.11.010.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hubanks, P. A., M. D. King, S. A. Platnick, and R. A. Pincus, 2008: MODIS Atmosphere L3 gridded product. MODIS Algorithm Theoretical Basis Doc. ATBD-MOD-30, 96 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/L3_ATBD_2008_12_04.pdf.]

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. S. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, doi:10.1175/JCLI-D-12-00436.1.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. E. Waliser, J. L. Li, and X. Jiang, 2012: On the annual cycle, variability, and correlations of oceanic low-topped clouds with large-scale circulation using Aqua MODIS and ERA-Interim. J. Climate, 25, 61526174, doi:10.1175/JCLI-D-11-00478.1.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19, 23252346, doi:10.1175/JCLI3740.1.

    • Search Google Scholar
    • Export Citation
  • Min, Q., and Coauthors, 2012: Comparison of MODIS cloud microphysical properties with in-situ measurements over the Southeast Pacific. Atmos. Chem. Phys., 12, 11 26111 273, doi:10.5194/acp-12-11261-2012.

    • Search Google Scholar
    • Export Citation
  • Nam, C., S. Bony, J. L. Dufresne, and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, doi:10.1029/2012GL053421.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 16 December 2013. [Available online at http://rda.ucar.edu/datasets/ds083.2/.]

  • Painemal, D., and P. Zuidema, 2011: Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements. J. Geophys. Res., 116, D24206, doi:10.1029/2011JD016155.

    • Search Google Scholar
    • Export Citation
  • Park, S., C. Deser, and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18, 45824599, doi:10.1175/JCLI3521.1.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1972: The deepening of the wind—Mixed layer. Geophys. Fluid Dyn., 4, 381404, doi:10.1080/03091927208236105.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and R. Garreaud, 2010a: Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx—Part 1: Mean structure and diurnal cycle. Atmos. Chem. Phys., 10, 44914506, doi:10.5194/acp-10-4491-2010.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and R. Garreaud, 2010b: Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx—Part 2: Synoptic variability. Atmos. Chem. Phys., 10, 45074519, doi:10.5194/acp-10-4507-2010.

    • Search Google Scholar
    • Export Citation
  • Rapp, A. D., 2015: Cloud responses in the AMIP simulations of CMIP5 models in the southeastern Pacific marine subsidence region. Int. J. Climatol., 35, 29082921, doi:10.1002/joc.4181.

    • Search Google Scholar
    • Export Citation
  • Richter, I., 2015: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Wiley Interdiscip. Rev.: Climate Change, 6, 345358, doi:10.1002/wcc.338.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., H. L. Wang, and P. J. Rasch, 2012: The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus. Geophys. Res. Lett., 39, L13801, doi:10.1029/2012GL052028.

    • Search Google Scholar
    • Export Citation
  • van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano, 2006: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 6, 34233441, doi:10.5194/acp-6-3423-2006.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., M. Claudon, G. Caniaux, H. Giordani, and R. Roehrig, 2014: Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model? Climate Dyn., 43, 29632984, doi:10.1007/s00382-013-2036-x.

    • Search Google Scholar
    • Export Citation
  • Wang, C. Z., L. P. Zhang, S. K. Lee, L. X. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, doi:10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Wang, S., L. W. O’Neill, Q. Jiang, S. P. de Szoeke, X. Hong, H. Jin, W. T. Thompson, and X. Zheng, 2011: A regional real-time forecast of marine boundary layers during VOCALS-REx. Atmos. Chem. Phys., 11, 421437, doi:10.5194/acp-11-421-2011.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. Louis Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., E. J. Highwood, and N. J. Dunstone, 2013: The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett., 8, 024033, doi:10.1088/1748-9326/8/2/024033.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Zeng, X. B., and A. Beljaars, 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605, doi:10.1029/2005GL023030.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., G. N. Kiladis, T. Shinoda, E. J. Metzger, H. E. Hurlburt, J. Lin, and B. S. Giese, 2010: Upper-ocean processes under the stratus cloud deck in the southeast Pacific Ocean. J. Phys. Oceanogr., 40, 103120, doi:10.1175/2009JPO4213.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., T. Shinoda, J.-L. Lin, and G. N. Kiladis, 2011: Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J. Climate, 24, 41394164, doi:10.1175/2011JCLI4172.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 207 80 13
PDF Downloads 147 50 10