A Large-Eddy Simulation Study of Atmospheric Boundary Layer Influence on Stratified Flows over Terrain

Jeremy A. Sauer Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Jeremy A. Sauer in
Current site
Google Scholar
PubMed
Close
,
Domingo Muñoz-Esparza Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Domingo Muñoz-Esparza in
Current site
Google Scholar
PubMed
Close
,
Jesse M. Canfield Computational Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Jesse M. Canfield in
Current site
Google Scholar
PubMed
Close
,
Keeley R. Costigan Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Keeley R. Costigan in
Current site
Google Scholar
PubMed
Close
,
Rodman R. Linn Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Rodman R. Linn in
Current site
Google Scholar
PubMed
Close
, and
Young-Joon Kim Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Young-Joon Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The impact of atmospheric boundary layer (ABL) interactions with large-scale stably stratified flow over an isolated, two-dimensional hill is investigated using turbulence-resolving large-eddy simulations. The onset of internal gravity wave breaking and leeside flow response regimes of trapped lee waves and nonlinear breakdown (or hydraulic-jump-like state) as they depend on the classical inverse Froude number, Fr−1 = Nh/Ug, is explored in detail. Here, N is the Brunt–Väisälä frequency, h is the hill height, and Ug is the geostrophic wind. The results here demonstrate that the presence of a turbulent ABL influences mountain wave (MW) development in critical aspects, such as dissipation of trapped lee waves and amplified stagnation zone turbulence through Kelvin–Helmholtz instability. It is shown that the nature of interactions between the large-scale flow and the ABL is better characterized by a proposed inverse compensated Froude number, = N(hzi)/Ug, where zi is the ABL height. In addition, it is found that the onset of the nonlinear-breakdown regime, ≈ 1.0, is initiated when the vertical wavelength becomes comparable to the sufficiently energetic scales of turbulence in the stagnation zone and ABL, yielding an abrupt change in leeside flow response. Finally, energy spectra are presented in the context of MW flows, supporting the existence of a clear transition in leeside flow response, and illustrating two distinct energy distribution states for the trapped-lee-wave and the nonlinear-breakdown regimes.

Corresponding author address: Jeremy A. Sauer, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544. E-mail: jsauer@lanl.gov

Abstract

The impact of atmospheric boundary layer (ABL) interactions with large-scale stably stratified flow over an isolated, two-dimensional hill is investigated using turbulence-resolving large-eddy simulations. The onset of internal gravity wave breaking and leeside flow response regimes of trapped lee waves and nonlinear breakdown (or hydraulic-jump-like state) as they depend on the classical inverse Froude number, Fr−1 = Nh/Ug, is explored in detail. Here, N is the Brunt–Väisälä frequency, h is the hill height, and Ug is the geostrophic wind. The results here demonstrate that the presence of a turbulent ABL influences mountain wave (MW) development in critical aspects, such as dissipation of trapped lee waves and amplified stagnation zone turbulence through Kelvin–Helmholtz instability. It is shown that the nature of interactions between the large-scale flow and the ABL is better characterized by a proposed inverse compensated Froude number, = N(hzi)/Ug, where zi is the ABL height. In addition, it is found that the onset of the nonlinear-breakdown regime, ≈ 1.0, is initiated when the vertical wavelength becomes comparable to the sufficiently energetic scales of turbulence in the stagnation zone and ABL, yielding an abrupt change in leeside flow response. Finally, energy spectra are presented in the context of MW flows, supporting the existence of a clear transition in leeside flow response, and illustrating two distinct energy distribution states for the trapped-lee-wave and the nonlinear-breakdown regimes.

Corresponding author address: Jeremy A. Sauer, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544. E-mail: jsauer@lanl.gov
Save
  • Baines, P. G., 1998: Topographic Effects in Stratified Flows. Cambridge University Press, 500 pp.

  • Baines, P. G., and K. P. Hoinka, 1985: Stratified flow over two-dimensional topography in fluid of infinite depth: A laboratory simulation. J. Atmos. Sci., 42, 16141630, doi:10.1175/1520-0469(1985)042<1614:SFOTDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Broad, A. S., 1996: High-resolution numerical-model integrations to validate gravity-wave-drag parametrization schemes: A case-study. Quart. J. Roy. Meteor. Soc., 122, 16251653, doi:10.1002/qj.49712253508.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixing layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and C. A. Reynolds, 2008: Implications of regime transitions for mountain-wave-breaking predictability. Mon. Wea. Rev., 136, 52115223, doi:10.1175/2008MWR2554.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2011: An intercomparison of T-REX mountain-wave simulations and implications for mesoscale predictability. Mon. Wea. Rev., 139, 28112831, doi:10.1175/MWR-D-10-05042.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 25272543, doi:10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2013: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Texts in Applied Mathematics, Vol. 32, Springer Science & Business Media, 466 pp.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1987: Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci., 44, 34023412, doi:10.1175/1520-0469(1987)044<3402:ALADWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and T. Qian, 2008: Wave–turbulence interactions in a breaking mountain wave. J. Atmos. Sci., 65, 31393158, doi:10.1175/2008JAS2517.1.

    • Search Google Scholar
    • Export Citation
  • Hills, M. O., D. R. Durran, and P. N. Blossey, 2015: The dissipation of trapped lee waves. Part II: The relative importance of the boundary layer and the stratosphere. J. Atmos. Sci., 73, 943955, doi:10.1175/JAS-D-15-0175.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, and R. B. Smith, 2006: Interaction between trapped waves and boundary layers. J. Atmos. Sci., 63, 617633, doi:10.1175/JAS3640.1.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, doi:10.3137/ao.410105.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., and D. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78107, doi:10.1175/1520-0469(1978)035<0078:NSOHMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in an incompressible viscous fluid at very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 301305.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kundu, P., and I. Cohen, 2004: Fluid Mechanics. Elsevier, 759 pp.

  • Leonard, B., 1980: The QUICK algorithm—A uniformly third-order finite-difference method for highly convective flows. Comput. Methods Fluids, 1, 159195.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Tech. Rep. 123, 22 pp., doi:10.5065/D67H1GGQ.

  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical experiments. Proc. IBM Scientific Computing Symp. on Environmental Sciences, White Plains, NY, International Business Machines Corporation, 195–210.

  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977, doi:10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Long, R. R., 1953: A laboratory model resembling the “Bishop-wave” phenomenon. Bull. Amer. Meteor. Soc., 34, 205–211.

  • Mobbs, S., and Coauthors, 2005: Observations of downslope winds and rotors in the Falkland Islands. Quart. J. Roy. Meteor. Soc., 131, 329351, doi:10.1256/qj.04.51.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35753587, doi:10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic turbulence mixing laws in the atmospheric surface layer. Tr. Akad. Nauk SSSR Geophiz. Inst., 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, C. García-Sánchez, and J. van Beeck, 2014a: Nesting turbulence in an offshore convective boundary layer using large-eddy simulations. Bound.-Layer Meteor., 151, 453478, doi:10.1007/s10546-014-9911-9.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014b: Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor., 153, 409440, doi:10.1007/s10546-014-9956-9.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., J. A. Sauer, R. R. Linn, and B. Kosović, 2016: Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows. J. Atmos. Sci., 73, 26032614, doi:10.1175/JAS-D-15-0304.1.

    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., and P. Bougeault, 1997: The effect of rotation and surface friction on orographic drag. J. Atmos. Sci., 54, 193210, doi:10.1175/1520-0469(1997)054<0193:TEORAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and W. T. Thompson, 2003: Some aspects of the effect of surface friction on flows over mountains. Quart. J. Roy. Meteor. Soc., 129, 25272557, doi:10.1256/qj.02.06.

    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of airflow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 1626.

  • Richard, E., P. Mascart, and E. C. Nickerson, 1989: The role of surface friction in downslope windstorms. J. Appl. Meteor., 28, 241251, doi:10.1175/1520-0450(1989)028<0241:TROSFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sauer, J., 2013: Towards improved capability and confidence in coupled atmospheric and wildland fire modeling. Ph.D. thesis, Florida State University, 129 pp.

  • Scorer, R., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, doi:10.1002/qj.49707532308.

  • Sharman, R., S. Trier, T. Lane, and J. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, doi:10.1029/2012GL051996.

    • Search Google Scholar
    • Export Citation
  • Smith, C. M., and E. D. Skyllingstad, 2009: Investigation of upstream boundary layer influence on mountain wave breaking and lee wave rotors using a large-eddy simulation. J. Atmos. Sci., 66, 31473164, doi:10.1175/2009JAS2949.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. M., and E. D. Skyllingstad, 2011: Effects of inversion height and surface heat flux on downslope windstorms. Mon. Wea. Rev., 139, 37503764, doi:10.1175/2011MWR3619.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 141, doi:10.1016/S0065-2687(08)60052-7.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2007: Interacting mountain waves and boundary layers. J. Atmos. Sci., 64, 594607, doi:10.1175/JAS3836.1.

  • Smith, R. B., Q. Jiang, and J. D. Doyle, 2006: A theory of gravity wave absorption by a boundary layer. J. Atmos. Sci., 63, 774781, doi:10.1175/JAS3631.1.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1990: Low Froude number flow past three-dimensional obstacles. Part II: Upwind flow reversal zone. J. Atmos. Sci., 47, 14981511, doi:10.1175/1520-0469(1990)047<1498:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Welch, W. T., P. Smolarkiewicz, R. Rotunno, and B. A. Boville, 2001: The large-scale effects of flow over periodic mesoscale topography. J. Atmos. Sci., 58, 14771492, doi:10.1175/1520-0469(2001)058<1477:TLSEOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, X., M. Xue, and Y. Wang, 2013: Gravity wave momentum flux in directional shear flows over three-dimensional mountains: Linear and nonlinear numerical solutions as compared to linear analytical solutions. J. Geophys. Res. Atmos., 118, 76707681, doi:10.1002/jgrd.50471.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 906 309 62
PDF Downloads 550 137 14