Impacts of the Diurnal Radiation Cycle on the Formation, Intensity, and Structure of Hurricane Edouard (2014)

Xiaodong Tang Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China, and Department of Meteorology, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Xiaodong Tang in
Current site
Google Scholar
PubMed
Close
and
Fuqing Zhang Department of Meteorology, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work examines the impacts of the diurnally varying radiation cycle on the formation, intensity, structure, and track of Hurricane Edouard (2014) at different stages of its life cycle through convection-permitting simulations. During the formation stage, nighttime destabilization through radiative cooling may promote deep moist convection that eventually leads to the genesis of the storm, while a tropical cyclone fails to develop in the absence of the night phase despite a strong incipient vortex under moderately strong vertical wind shear. The nighttime radiative cooling further enhances the primary vortex before the storm undergoes rapid intensification. Thereafter, the nighttime radiative cooling mainly increases convective activities outside of the primary eyewall that lead to stronger/broader rainbands and larger storm size during the mature stage of the hurricane; there is, however, less impact on the hurricane’s peak intensity in terms of maximum 10-m surface wind speed. The control forecast undergoes distinct secondary eyewall formation during the mature stage of Edouard (as observed), while there is no apparent eyewall replacement cycle as simulated in sensitivity experiments without solar insolation and the moat is narrower in those with switch-on solar insolation at night, suggesting the potential role of the diurnally varying radiative impact.

Denotes Open Access content.

Corresponding author address: Xiaodong Tang, Ph.D., School of Atmospheric Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China. E-mail: xdtang@nju.edu.cn

Abstract

This work examines the impacts of the diurnally varying radiation cycle on the formation, intensity, structure, and track of Hurricane Edouard (2014) at different stages of its life cycle through convection-permitting simulations. During the formation stage, nighttime destabilization through radiative cooling may promote deep moist convection that eventually leads to the genesis of the storm, while a tropical cyclone fails to develop in the absence of the night phase despite a strong incipient vortex under moderately strong vertical wind shear. The nighttime radiative cooling further enhances the primary vortex before the storm undergoes rapid intensification. Thereafter, the nighttime radiative cooling mainly increases convective activities outside of the primary eyewall that lead to stronger/broader rainbands and larger storm size during the mature stage of the hurricane; there is, however, less impact on the hurricane’s peak intensity in terms of maximum 10-m surface wind speed. The control forecast undergoes distinct secondary eyewall formation during the mature stage of Edouard (as observed), while there is no apparent eyewall replacement cycle as simulated in sensitivity experiments without solar insolation and the moat is narrower in those with switch-on solar insolation at night, suggesting the potential role of the diurnally varying radiative impact.

Denotes Open Access content.

Corresponding author address: Xiaodong Tang, Ph.D., School of Atmospheric Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China. E-mail: xdtang@nju.edu.cn
Save
  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browner, S. P., W. L. Woodley, and C. G. Griffith, 1977: Diurnal oscillation of the area of cloudiness associated with tropical storms. Mon. Wea. Rev., 105, 856864, doi:10.1175/1520-0493(1977)105<0856:DOOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2014: Influence of cloud–radiative forcing on tropical cyclone structure. J. Atmos. Sci., 71, 16441662, doi:10.1175/JAS-D-13-0265.1.

    • Search Google Scholar
    • Export Citation
  • Craig, G., 1996: Numerical experiments on radiation and tropical cyclones. Quart. J. Roy. Meteor. Soc., 122, 415422, doi:10.1002/qj.49712253006.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, doi:10.1175/MWR-D-13-00191.1.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2010: Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci., 67, 655672, doi:10.1175/2009JAS3115.1.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346, doi:10.1175/MWR-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Hobgood, J. S., 1986: A possible mechanism for the diurnal oscillations of tropical cyclones. J. Atmos. Sci., 43, 29012922, doi:10.1175/1520-0469(1986)043<2901:APMFTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, doi:10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, doi:10.1002/qj.49711046510.

    • Search Google Scholar
    • Export Citation
  • Hong, S., and J. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S., Y. Noh, and J. B. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, doi:10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lajoie, F. A., and I. J. Butterworth, 1984: Oscillation of high-level cirrus and heavy precipitation around Australian region tropical cyclones. Mon. Wea. Rev., 112, 535544, doi:10.1175/1520-0493(1984)112<0535:OOHLCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., M. Demaria, and T. H. V. Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898, doi:10.1175/2008MWR2268.1.

    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13. [Available online at https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.]

  • Melhauser, C., and F. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 12411259, doi:10.1175/JAS-D-13-0116.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1983: Diurnal variations of satellite-measured TBB areal distribution and eye diameter of mature typhoons. J. Meteor. Soc. Japan, 61, 7789.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., 2015: An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity. Atmos. Chem. Phys., 15, 90039029, doi:10.5194/acp-15-9003-2015.

    • Search Google Scholar
    • Export Citation
  • Qian, C., F. Zhang, B. W. Green, J. Zhang, and X. Zhou, 2013: Probabilistic evaluation of the dynamics and prediction of Supertyphoon Megi (2010). Wea. Forecasting, 28, 15621577, doi:10.1175/WAF-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shu, H.-L., Q.-H. Zhang, and B. Xu, 2013: Diurnal variation of tropical cyclone rainfall in the western north Pacific in 2008–2010. Atmos. Oceanic Sci. Lett., 6, 103108, doi:10.1080/16742834.2013.11447064.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1984: The diurnal variation of Atlantic Ocean tropical cyclone cloud distribution inferred from geostationary satellite infrared measurements. Mon. Wea. Rev., 112, 23382344, doi:10.1175/1520-0493(1984)112<2338:TDVOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2014: Hurricane Edouard (AL062014), 11–19 September 2014. National Hurricane Center Tropical Cyclone Rep., 19 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL062014_Edouard.pdf.]

  • Tallapragada, V., and Coauthors, 2013: Hurricane Weather Research and Forecasting (HWRF) model: 2013 scientific documentation. Developmental Testbed Center, 99 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.5a_ScientificDoc.pdf.]

  • Tao, W.-K., J. Simpson, S. Lang, C.-H. Sui, B. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 26242651, doi:10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full‐physics modeled hurricanes. J. Geophys. Res., 113, 19842012, doi:10.1029/2007JD008897.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and L. M. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244253, doi:10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65, 15051527, doi:10.1175/2007JAS2528.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and G. L. Stephens, 1980: Tropical upper-tropospheric extended clouds: Inference from winter MONEX. J. Atmos. Sci., 37, 15211541, doi:10.1175/1520-0469-37.7.1521.

    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, doi:10.2151/jmsj.2016-018, in press.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., Z. Ruan, D. Chen, and T. Lian, 2015: Diurnal variations of tropical cyclone precipitation in the inner and outer rainbands. J. Geophys. Res. Atmos., 120, 111, doi:10.1002/2014JD022190.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, doi:10.1175/2010JAS3387.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1995: Impact of interactive radiative transfer on the macroscopic behavior of cumulus ensembles. Part II: Mechanisms for cloud–radiation interactions. J. Atmos. Sci., 52, 800817, doi:10.1175/1520-0469(1995)052<0800:IOIRTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yaroshevich, M. I., and L. Kh. Ingel, 2013: Diurnal variations in the intensity of tropical cyclones. Izv., Atmos. Ocean. Phys., 49, 375379, doi:10.1134/S0001433813040117.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Y. Weng, 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2533, doi:10.1175/BAMS-D-13-00231.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1267 364 32
PDF Downloads 745 138 13