Characteristics of Gravity Waves from Convection and Implications for Their Parameterization in Global Circulation Models

Claudia Stephan Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Claudia Stephan in
Current site
Google Scholar
PubMed
Close
,
M. Joan Alexander CoRA Office, NorthWest Research Associates, Inc., Boulder, Colorado

Search for other papers by M. Joan Alexander in
Current site
Google Scholar
PubMed
Close
, and
Jadwiga H. Richter National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jadwiga H. Richter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Characteristic properties of gravity waves from convection over the continental United States are derived from idealized high-resolution numerical simulations. In a unique modeling approach, waves are forced by a realistic thermodynamic source based on observed precipitation data. The square of the precipitation rate and the gravity wave momentum fluxes both show lognormal occurrence distributions, with long tails of extreme events. Convectively generated waves can give forces in the lower stratosphere that at times rival orographic wave forcing. Throughout the stratosphere, zonal forces due to convective wave drag are much stronger than accounted for by current gravity wave drag parameterizations, so their contribution to the summer branch of the stratospheric Brewer–Dobson circulation is in fact much larger than models predict. A comparison of these forces to previous estimates of the total drag implies that convectively generated gravity waves are a primary source of summer-hemisphere stratospheric wave drag. Furthermore, intermittency and strength of the zonal forces due to convective gravity wave drag in the lower stratosphere resemble analysis increments, suggesting that a more realistic representation of these waves may help alleviate model biases on synoptic scales. The properties of radar precipitation and gravity waves seen in this study lead to a proposed change for future parameterization methods that would give more realistic drag forces in the stratosphere without compromising mesospheric gravity wave drag.

Current affiliation: National Centre for Atmospheric Science–Climate, Department of Meteorology, University of Reading, Reading, United Kingdom.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Claudia Stephan, Department of Meteorology, University of Reading, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: c.c.stephan@reading.ac.uk

Abstract

Characteristic properties of gravity waves from convection over the continental United States are derived from idealized high-resolution numerical simulations. In a unique modeling approach, waves are forced by a realistic thermodynamic source based on observed precipitation data. The square of the precipitation rate and the gravity wave momentum fluxes both show lognormal occurrence distributions, with long tails of extreme events. Convectively generated waves can give forces in the lower stratosphere that at times rival orographic wave forcing. Throughout the stratosphere, zonal forces due to convective wave drag are much stronger than accounted for by current gravity wave drag parameterizations, so their contribution to the summer branch of the stratospheric Brewer–Dobson circulation is in fact much larger than models predict. A comparison of these forces to previous estimates of the total drag implies that convectively generated gravity waves are a primary source of summer-hemisphere stratospheric wave drag. Furthermore, intermittency and strength of the zonal forces due to convective gravity wave drag in the lower stratosphere resemble analysis increments, suggesting that a more realistic representation of these waves may help alleviate model biases on synoptic scales. The properties of radar precipitation and gravity waves seen in this study lead to a proposed change for future parameterization methods that would give more realistic drag forces in the stratosphere without compromising mesospheric gravity wave drag.

Current affiliation: National Centre for Atmospheric Science–Climate, Department of Meteorology, University of Reading, Reading, United Kingdom.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Claudia Stephan, Department of Meteorology, University of Reading, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: c.c.stephan@reading.ac.uk
Save
  • Abalos, M., B. Legras, F. Ploeger, and W. J. Randel, 2015: Evaluating the advective Brewer–Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. Atmos., 120, 75347554, doi:10.1002/2015JD023182.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and K. H. Rosenlof, 1996: Nonstationary gravity wave forcing of the stratospheric zonal mean wind. J. Geophys. Res., 101, 23 46523 474, doi:10.1029/96JD02197.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and K. H. Rosenlof, 2003: Gravity wave forcing in the stratosphere: Observational constraints from UARS and implications for parameterization in global models. J. Geophys. Res., 108, 4597, doi:10.1029/2003JD003373.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61, 18051815, doi:10.1175/1520-0469(2004)061<1805:GWGBAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Birner, T., and H. Boenisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, doi:10.5194/acp-11-817-2011.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, doi:10.1002/qj.49707532603.

    • Search Google Scholar
    • Export Citation
  • Bushell, A. C., N. Butchart, S. H. Derbyshire, D. R. Jackson, G. J. Shutts, S. B. Vosper, and S. Webster, 2015: Parameterized gravity wave momentum fluxes from sources related to convection and large-scale precipitation processes in a global atmosphere model. J. Atmos. Sci., 72, 43494371, doi:10.1175/JAS-D-15-0022.1.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741, doi:10.1007/s00382-006-0162-4.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374, doi:10.1175/2010JCLI3404.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., E. P. Gerber, and O. Buehler, 2014: What drives the Brewer–Dobson circulation? J. Atmos. Sci., 71, 38373855, doi:10.1175/JAS-D-14-0021.1.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., F. Lott, and A. Hertzog, 2014: Intermittency in a stochastic parameterization of nonorographic gravity waves. J. Geophys. Res. Atmos., 119, 11 90511 919, doi:10.1002/2014JD022002.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. London, A236, 187193, doi:10.1098/rspa.1956.0127.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., T. G. Shepherd, and D. W. Waugh, 2010: Chemistry–climate model validation. SPARC Tech. Rep. 5, WCRP-30, WMO/TD-40, 426 pp. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5/.]

  • Garcia, R. R., and B. A. Boville, 1994: Downward control of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 22382245, doi:10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trend in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, 19502003, doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., M. J. Alexander, and R. Plougonven, 2012: On the intermittency of gravity wave momentum flux in the stratosphere. J. Atmos. Sci., 69, 34333448, doi:10.1175/JAS-D-12-09.1.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., M. J. Alexander, and R. Plougonven, 2013: Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology. J. Geophys. Res. Atmos., 118, 10 98010 993, doi:10.1002/jgrd.50869.

    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., R. Plougonven, and A. Hertzog, 2013: Gravity waves generated by deep tropical convection: Estimates from balloon observations and mesoscale simulations. J. Geophys. Res. Atmos., 118, 96909707, doi:10.1002/jgrd.50781.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, doi:10.1002/jgrd.50705.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, S. Polavarapu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, doi:10.1175/JAS-D-11-0159.1.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., K. Sato, and H. Akiyoshi, 2011: A study on the formation and trend of the Brewer–Dobson circulation. J. Geophys. Res., 116, D10117, doi:10.1029/2010JD014953.

    • Search Google Scholar
    • Export Citation
  • Piani, C., D. Durran, M. J. Alexander, and J. R. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57, 36893702, doi:10.1175/1520-0469(2000)057<3689:ANSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809, doi:10.2151/jmsj.80.793.

  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., C. Deser, and L. Sun, 2015: Effects of stratospheric variability on El Niño teleconnections. Environ. Res. Lett., 10, 124021, doi:10.1088/1748-9326/10/12/124021.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Schirber, S., E. Manzini, and M. J. Alexander, 2014: A convection-based gravity wave parameterization in a general circulation model: Implementation and improvements on the QBO. J. Adv. Model. Earth Syst., 6, 264279, doi:10.1002/2013MS000286.

    • Search Google Scholar
    • Export Citation
  • Stephan, C. C., and M. J. Alexander, 2014: Summer season squall-line simulations: Sensitivity of gravity waves to physics parameterization and implications for their parameterization in global climate models. J. Atmos. Sci., 71, 33763391, doi:10.1175/JAS-D-13-0380.1.

    • Search Google Scholar
    • Export Citation
  • Stephan, C. C., and M. J. Alexander, 2015: Realistic simulations of atmospheric gravity waves over the continental U.S. using precipitation radar data. J. Adv. Model. Earth Syst., 7, 823835, doi:10.1002/2014MS000396.

    • Search Google Scholar
    • Export Citation
  • Stockwell, R. G., L. Mansinha, and R. P. Lowe, 1996: Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process., 44, 9981001, doi:10.1109/78.492555.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1080 506 60
PDF Downloads 276 74 7