Limitations of One-Dimensional Mesoscale PBL Parameterizations in Reproducing Mountain-Wave Flows

Domingo Muñoz-Esparza Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Domingo Muñoz-Esparza in
Current site
Google Scholar
PubMed
Close
,
Jeremy A. Sauer Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Jeremy A. Sauer in
Current site
Google Scholar
PubMed
Close
,
Rodman R. Linn Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Rodman R. Linn in
Current site
Google Scholar
PubMed
Close
, and
Branko Kosović National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Branko Kosović in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, the authors investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill are used and compared to four commonly used PBL schemes. It is found that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocity, and turbulent kinetic energy distribution in the downhill shooting-flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift, producing errors of approximately 10 m s−1 at downstream locations because of the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore, results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex terrain and other types of flows where one-dimensional PBL assumptions are violated.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Domingo Muñoz-Esparza, Research Applications Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA. E-mail: domingom@ucar.edu

Abstract

Mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, the authors investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill are used and compared to four commonly used PBL schemes. It is found that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocity, and turbulent kinetic energy distribution in the downhill shooting-flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift, producing errors of approximately 10 m s−1 at downstream locations because of the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore, results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex terrain and other types of flows where one-dimensional PBL assumptions are violated.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Domingo Muñoz-Esparza, Research Applications Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA. E-mail: domingom@ucar.edu
Save
  • Ágústsson, H., and H. Ólafsson, 2014: Simulations of observed lee waves and rotor turbulence. Mon. Wea. Rev., 142, 832849, doi:10.1175/MWR-D-13-00212.1.

    • Search Google Scholar
    • Export Citation
  • Broad, A. S., 1996: High-resolution numerical-model integrations to validate gravity-wave-drag parametrization schemes: A case-study. Quart. J. Roy. Meteor. Soc., 122, 16251653, doi:10.1002/qj.49712253508.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Y. Lin, S. Medina, and B. F. Smull, 2008: Orographic modification of convection and flow kinematics by the Oregon coast range and cascades during IMPROVE-2. Mon. Wea. Rev., 136, 38943916, doi:10.1175/2008MWR2369.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Q. Jiang, 2006: Observations and numerical simulations of mountain waves in the presence of directional wind shear. Quart. J. Roy. Meteor. Soc., 132, 18771905, doi:10.1256/qj.05.140.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., Q. Jiang, R. B. Smith, and V. Grubišic, 2011a: Three-dimensional characteristics of stratospheric mountain waves during T-REX. Mon. Wea. Rev., 139, 323, doi:10.1175/2010MWR3466.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2011b: An intercomparison of T-REX mountain-wave simulations and implications for mesoscale predictability. Mon. Wea. Rev., 139, 28112831, doi:10.1175/MWR-D-10-05042.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1987: Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci., 44, 34023412, doi:10.1175/1520-0469(1987)044<3402:ALADWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and T. Qian, 2008: Wave–turbulence interactions in a breaking mountain wave. J. Atmos. Sci., 65, 31393158, doi:10.1175/2008JAS2517.1.

    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 30173038, doi:10.1175/MWR-D-11-00352.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 14811496, doi:10.1002/qj.665.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/phys_refs/SURFACE_LAYER/eta_part4.pdf.]

  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF Model. J. Appl. Meteor. Climatol., 51, 300316, doi:10.1175/JAMC-D-11-084.1.

    • Search Google Scholar
    • Export Citation
  • Jonassen, M. O., H. Ágústsson, and H. Ólafsson, 2014: Impact of surface characteristics on flow over a mesoscale mountain. Quart. J. Roy. Meteor. Soc., 140, 23302341, doi:10.1002/qj.2302.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 18751902, doi:10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Tech. Rep. 123, 22 pp.

  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2012: An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF Model. Mon. Wea. Rev., 140, 39363955, doi:10.1175/MWR-D-11-00311.1.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35733587, doi:10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014: Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor., 153, 409440, doi:10.1007/s10546-014-9956-9.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. van Beeck, and J. Mirocha, 2015: A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers. Phys. Fluids, 27, 035 102, doi:10.1063/1.4913572.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, doi:10.1023/A:1018915827400.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2013: An Introduction to Atmospheric Gravity Waves. Academic Press, 400 pp.

  • Ólafsson, H., and P. Bougeault, 1997: The effect of rotation and surface friction on orographic drag. J. Atmos. Sci., 54, 193210, doi:10.1175/1520-0469(1997)054<0193:TEORAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sauer, J. A., 2013: Towards improved capability and confidence in coupled atmospheric and wildland fire modeling. Ph.D. thesis, Florida State University, 117 pp. [Available online at http://diginole.lib.fsu.edu/etd/8632.]

  • Sauer, J. A., D. Muñoz-Esparza, J. Canfield, K. Costigan, R. R. Linn, and Y.-J. Kim, 2016: A large-eddy simulation study of atmospheric boundary layer influence on stratified flows over terrain. J. Atmos. Sci., 73, 26152632, doi:10.1175/JAS-D-15-0282.1.

    • Search Google Scholar
    • Export Citation
  • Sheridan, P., and S. Vosper, 2012: High-resolution simulations of lee waves and downslope winds over the Sierra Nevada during T-REX IOP 6. J. Appl. Meteor. Climatol., 51, 13331352, doi:10.1175/JAMC-D-11-0207.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, C. M., and E. D. Skyllingstad, 2009: Investigation of upstream boundary layer influence on mountain wave breaking and lee wave rotors using a large-eddy simulation. J. Atmos. Sci., 66, 31473164, doi:10.1175/2009JAS2949.1.

    • Search Google Scholar
    • Export Citation
  • Smith, S., and A. Broad, 2003: Horizontal and temporal variability of mountain waves over Mont Blanc. Quart. J. Roy. Meteor. Soc., 129, 21952216, doi:10.1256/qj.02.148.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steinhoff, D. F., D. H. Bromwich, and A. Monaghan, 2013: Dynamics of the foehn mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF. Quart. J. Roy. Meteor. Soc., 139, 16151631, doi:10.1002/qj.2038.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Layer Meteor., 117, 231257, doi:10.1007/s10546-004-6848-4.

    • Search Google Scholar
    • Export Citation
  • Vosper, S., 2004: Inversion effects on mountain lee waves. Quart. J. Roy. Meteor. Soc., 130, 17231748, doi:10.1256/qj.03.63.

  • Vosper, S., P. Sheridan, and A. Brown, 2006: Flow separation and rotor formation beneath two-dimensional trapped lee waves. Quart. J. Roy. Meteor. Soc., 132, 24152438, doi:10.1256/qj.05.174.

    • Search Google Scholar
    • Export Citation
  • Welch, W. T., P. Smolarkiewicz, R. Rotunno, and B. A. Boville, 2001: The large-scale effects of flow over periodic mesoscale topography. J. Atmos. Sci., 58, 14771492, doi:10.1175/1520-0469(2001)058<1477:TLSEOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, X., M. Xue, and Y. Wang, 2013: Gravity wave momentum flux in directional shear flows over three-dimensional mountains: Linear and nonlinear numerical solutions as compared to linear analytical solutions. J. Geophys. Res. Atmos., 118, 76707681, doi:10.1002/jgrd.50471.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 418 95 6
PDF Downloads 242 64 3