Stratospheric Gravity Wave Fluxes and Scales during DEEPWAVE

Ronald B. Smith * Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Ronald B. Smith in
Current site
Google Scholar
PubMed
Close
,
Alison D. Nugent * Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Alison D. Nugent in
Current site
Google Scholar
PubMed
Close
,
Christopher G. Kruse * Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Christopher G. Kruse in
Current site
Google Scholar
PubMed
Close
,
David C. Fritts GATS, Boulder, Colorado

Search for other papers by David C. Fritts in
Current site
Google Scholar
PubMed
Close
,
James D. Doyle Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
,
Steven D. Eckermann Naval Research Laboratory, Washington, D.C.

Search for other papers by Steven D. Eckermann in
Current site
Google Scholar
PubMed
Close
,
Michael J. Taylor Utah State University, Logan, Utah

Search for other papers by Michael J. Taylor in
Current site
Google Scholar
PubMed
Close
,
Andreas Dörnbrack ** German Aerospace Center (DLR), Oberpfaffenhofen, Germany

Search for other papers by Andreas Dörnbrack in
Current site
Google Scholar
PubMed
Close
,
M. Uddstrom National Institute of Water and Atmospheric Research, Kilbirnie, Wellington, New Zealand

Search for other papers by M. Uddstrom in
Current site
Google Scholar
PubMed
Close
,
William Cooper National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William Cooper in
Current site
Google Scholar
PubMed
Close
,
Pavel Romashkin National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Pavel Romashkin in
Current site
Google Scholar
PubMed
Close
,
Jorgen Jensen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jorgen Jensen in
Current site
Google Scholar
PubMed
Close
, and
Stuart Beaton National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stuart Beaton in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) project in June and July 2014, the Gulfstream V research aircraft flew 97 legs over the Southern Alps of New Zealand and 150 legs over the Tasman Sea and Southern Ocean, mostly in the low stratosphere at 12.1-km altitude. Improved instrument calibration, redundant sensors, longer flight legs, energy flux estimation, and scale analysis revealed several new gravity wave properties. Over the sea, flight-level wave fluxes mostly fell below the detection threshold. Over terrain, disturbances had characteristic mountain wave attributes of positive vertical energy flux (EFz), negative zonal momentum flux, and upwind horizontal energy flux. In some cases, the fluxes changed rapidly within an 8-h flight, even though environmental conditions were nearly unchanged. The largest observed zonal momentum and vertical energy fluxes were MFx = −550 mPa and EFz = 22 W m−2, respectively.

A wide variety of disturbance scales were found at flight level over New Zealand. The vertical wind variance at flight level was dominated by short “fluxless” waves with wavelengths in the 6–15-km range. Even shorter scales, down to 500 m, were found in wave breaking regions. The wavelength of the flux-carrying mountain waves was much longer—mostly between 60 and 150 km. In the strong cases, however, with EFz > 4 W m−2, the dominant flux wavelength decreased (i.e., “downshifted”) to an intermediate wavelength between 20 and 60 km. A potential explanation for the rapid flux changes and the scale “downshifting” is that low-level flow can shift between “terrain following” and “envelope following” associated with trapped air in steep New Zealand valleys.

Corresponding author address: Ronald B. Smith, Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109. E-mail: ronald.smith@yale.edu

Abstract

During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) project in June and July 2014, the Gulfstream V research aircraft flew 97 legs over the Southern Alps of New Zealand and 150 legs over the Tasman Sea and Southern Ocean, mostly in the low stratosphere at 12.1-km altitude. Improved instrument calibration, redundant sensors, longer flight legs, energy flux estimation, and scale analysis revealed several new gravity wave properties. Over the sea, flight-level wave fluxes mostly fell below the detection threshold. Over terrain, disturbances had characteristic mountain wave attributes of positive vertical energy flux (EFz), negative zonal momentum flux, and upwind horizontal energy flux. In some cases, the fluxes changed rapidly within an 8-h flight, even though environmental conditions were nearly unchanged. The largest observed zonal momentum and vertical energy fluxes were MFx = −550 mPa and EFz = 22 W m−2, respectively.

A wide variety of disturbance scales were found at flight level over New Zealand. The vertical wind variance at flight level was dominated by short “fluxless” waves with wavelengths in the 6–15-km range. Even shorter scales, down to 500 m, were found in wave breaking regions. The wavelength of the flux-carrying mountain waves was much longer—mostly between 60 and 150 km. In the strong cases, however, with EFz > 4 W m−2, the dominant flux wavelength decreased (i.e., “downshifted”) to an intermediate wavelength between 20 and 60 km. A potential explanation for the rapid flux changes and the scale “downshifting” is that low-level flow can shift between “terrain following” and “envelope following” associated with trapped air in steep New Zealand valleys.

Corresponding author address: Ronald B. Smith, Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109. E-mail: ronald.smith@yale.edu
Save
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., S. D. Eckermann, P. A. Newman, L. Lait, K. R. Chan, M. Loewenstein, M. H. Proffitt, and B. L. Gary, 1996: Stratospheric horizontal wavenumber of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res., 101, 94419470, doi:10.1029/95JD03835.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, doi:10.1029/2005JD006301.

  • Bougeault, P., B. Benech, P. Bessemoulin, B. Carissimo, A. Jansa Clar, J. Pelon, M. Petitdidier, and E. Richard, 1997: PYREX: A summary of findings. Bull. Amer. Meteor. Soc., 78, 637650, doi:10.1175/1520-0477(1997)078<0637:PASOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969: Momentum transfer by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213243, doi:10.1002/qj.49709540402.

  • Chen, C.-C., D. R. Durran, and G. J. Hakim, 2005: Mountain-wave momentum flux in an evolving synoptic-scale flow. J. Atmos. Sci., 62, 32133231, doi:10.1175/JAS3543.1.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. M. Spuler, M. Spowart, D. H. Lenschow, and R. B. Friesen, 2014: Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor. J. Atmos. Meas. Tech., 7, 32153231, doi:10.5194/amt-7-3215-2014.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave induced rotors. J. Atmos. Sci., 59, 186201, doi:10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and R. B. Smith, 2003: Mountain waves over the Hohe Tauern: Influence of upstream diabatic effects. Quart. J. Roy. Meteor. Soc., 129, 799823, doi:10.1256/qj.01.205.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., Q. Jiang, R. B. Smith, and V. Grubišić, 2011: Three-dimensional characteristics of stratospheric mountain waves during T-REX. Mon. Wea. Rev., 139, 323, doi:10.1175/2010MWR3466.1.

    • Search Google Scholar
    • Export Citation
  • Duck, T. J., and J. A. Whiteway, 2005: The spectrum of waves and turbulence at the tropopause. Geophys. Res. Lett., 32, L07801, doi:10.1029/2004GL021189.

    • Search Google Scholar
    • Export Citation
  • Ehard, B., P. Achtert, A. Dörnbrack, S. Gisinger, J. Gumbel, M. Khaplanov, M. Rapp, and J. Wagner, 2016: Combination of lidar and model data for studying deep gravity wave propagation. Mon. Wea. Rev., 144, 7798, doi:10.1175/MWR-D-14-00405.1.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 (3), 123.

  • Fritts, D. C., and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci., 49, 111127, doi:10.1175/1520-0469(1992)049<0111:SOMVOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, doi:10.1175/BAMS-D-14-00269.1.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, doi:10.1175/JCLI-D-12-00545.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and T. Wang, 2015: Structural diagnostics of the tropopause inversion layer and its evolution. J. Geophys. Res. Atmos., 120, 4662, doi:10.1002/2014JD021846.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere. Developments in Atmospheric Science, Vol. 2, Elsevier, 472 pp.

  • Grubišić, V., and J. Lewis, 2004: Sierra Wave Project revisited: 50 years later. Bull. Amer. Meteor. Soc., 85, 11271142, doi:10.1175/BAMS-85-8-1127.

    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., 1984: Observations of a mountain wave event over the Pyrenees. Tellus, 36A, 369383, doi:10.1111/j.1600-0870.1984.tb00255.x.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, doi:10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and L. Mahrt, 1992: Momentum transport by gravity waves. J. Atmos. Sci., 49, 735748, doi:10.1175/1520-0469(1992)049<0735:MTBGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., and R. B. Smith, 2015: Gravity wave diagnostics and characteristics in mesoscale fields. J. Atmos. Sci., 72, 43724392, doi:10.1175/JAS-D-15-0079.1.

    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., E. Crosman, C. D. Whiteman, J. D. Horel, S. W. Hoch, W. O. J. Brown, and T. W. Horst, 2013: The Persistent Cold-Air Pool Study. Bull. Amer. Meteor. Soc., 94, 5163, doi:10.1175/BAMS-D-11-00255.1.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977, doi:10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and P. J. Kennedy, 1973: Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci., 30, 11351152, doi:10.1175/1520-0469(1973)030<1135:OOASMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., D. E. Waco, and S. I. Adelfang, 1974: Stratospheric mixing estimated from high-altitude turbulence measurements. J. Applied Meteor. Climatol., 13, 488493, doi:10.1175/1520-0450(1974)013<0488:SMEFHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., J. M. Nicholls, P. J. Kennedy, J. B. Klemp, and R. M. Chervin, 1982: Aircraft measurements of wave momentum flux over the Colorado Rocky Mountains. Quart. J. Roy. Meteor. Soc., 108, 625642, doi:10.1002/qj.49710845709.

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. Katopodes Chow, and J. K. Lundquist, 2012: An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF Model. Mon. Wea. Rev., 140, 39363955, doi:10.1175/MWR-D-11-00311.1.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2012: Atmospheric Gravity Waves. International Geophysics Series, Vol. 102, Academic Press, 321 pp.

  • Parish, T. R., M. D. Burkhart, and A. R. Rodi, 2007: Determination of the horizontal pressure gradient force using global positioning system on board an instrumented aircraft. J. Atmos. Oceanic Technol., 24, 521528, doi:10.1175/JTECH1986.1.

    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical results. Bull. Amer. Meteor. Soc., 29, 1626.

  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4146, doi:10.1002/qj.49707532308.

  • Smith, R. B., 1976: The generation of lee waves by the Blue Ridge. J. Atmos. Sci., 33, 507519, doi:10.1175/1520-0469(1976)033<0507:TGOLWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 25972603, doi:10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2.

  • Smith, R. B., 2004: Mountain meteorology and regional climates. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 193–222.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2007: Interacting mountain waves and boundary layers. J. Atmos. Sci., 64, 594607, doi:10.1175/JAS3836.1.

  • Smith, R. B., S. Skubis, J. Doyle, A. Broad, N. Volkert, and C. Kiemle, 2002: Mountain waves over Mt. Blanc: The role of a stagnant boundary layer. J. Atmos. Sci., 59, 20732092, doi:10.1175/1520-0469(2002)059<2073:MWOMBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., J. D. Doyle, Q. Jiang, and S. A. Smith, 2007: Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking. Quart. J. Roy. Meteor. Soc., 133, 917936, doi:10.1002/qj.103.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., B. K. Woods, J. Jensen, W. A. Cooper, J. D. Doyle, Q. Jiang, and V. Grubišić, 2008: Mountain waves entering the stratosphere. J. Atmos. Sci., 65, 25432562, doi:10.1175/2007JAS2598.1.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., and A. S. Broad, 2003: Horizontal and temporal variability of mountain waves over Mt. Blanc. Quart. J. Roy. Meteor. Soc., 129, 21952216, doi:10.1256/qj.02.148.

    • Search Google Scholar
    • Export Citation
  • Sutherland, B. R., 2010: Internal Gravity Waves. Cambridge University Press, 394 pp.

  • Vosper, S. B., and S. D. Mobbs, 1998: Momentum fluxes due to three-dimensional gravity-waves: Implications for measurements and numerical modeling. Quart. J. Roy. Meteor. Soc., 124, 27552767, doi:10.1002/qj.49712455211.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., J. K. Hughes, A. P. Lock, P. F. Sheridan, A. N. Ross, B. Jemmett-Smith, and A. R. Brown, 2014: Cold-pool formation in a narrow valley. Quart. J. Roy. Meteor. Soc., 140, 699714, doi:10.1002/qj.2160.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., E. G. Pavelin, R. Busen, J. Hacker, and S. Vosper, 2003: Airborne measurements of gravity wave breaking at the tropopause. Geophys. Res. Lett., 30, 2070, doi:10.1029/2003GL018207.

    • Search Google Scholar
    • Export Citation
  • Woods, B. K., and R. B. Smith, 2010: Energy flux and wavelet diagnostics of secondary mountain waves. J. Atmos. Sci., 67, 37213738, doi:10.1175/2009JAS3285.1.

    • Search Google Scholar
    • Export Citation
  • Wroblewski, D. E., O. R. Coté, J. M. Hacker, and R. J. Dobosy, 2010: Velocity and temperature structure functions in the upper troposphere and lower stratosphere from high-resolution aircraft measurements. J. Atmos. Sci., 67, 11571170, doi:10.1175/2009JAS3108.1.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2012: Extending the numerical stability limit of terrain-following coordinate models over steep slopes. Mon. Wea. Rev., 140, 37223733, doi:10.1175/MWR-D-12-00049.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., J. Wei, M. Zhang, K. P. Bowman, L. L. Pan, E. Atlas, and S. C. Wofsy, 2015: Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment. Atmos. Chem. Phys., 15, 76677684, doi:10.5194/acp-15-7667-2015.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4342 2952 1153
PDF Downloads 511 116 11