Updraft Buoyancy within and Moistening by Cumulonimbi prior to MJO Convective Onset in a Regional Model

Scott W. Powell Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Scott W. Powell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Processes responsible for widespread development of moderately deep cumulonimbi during a transition period before onset of two large-scale convective events associated with the Madden–Julian oscillation in late 2011 are investigated. A regional model (WRF) is capable of rapidly producing an approximately 3-day-long transition period prior to MJO convective onset similar to observed transition periods, during which moderately deep cumulonimbi were prevalent. During transition periods, evaporation in precipitating elements and horizontal advection of moisture away from the clouds in the nearby clear-air environment contributed to humidification below 400 hPa. Nonprecipitating clouds were present in the model mostly between 900 and 950 hPa and had no major impact on tropospheric moistening. Whether nonprecipitating cumuli grew into moderately deep cumulonimbi largely depended on the buoyancy of updrafts that extended into the 700–850-hPa layer. As mean environmental temperatures decreased, the mean cumulus updraft buoyancy in this layer became less negative. The start of two simulated transition periods were marked by rapid decreases in environmental temperature caused by reduction in environmental subsidence and/or increased cooling by advection or radiation. Small, widespread changes in the difference between 700- and 850-hPa environmental and updraft temperatures—on the order of 0.1 K and less than 0.4 K—had important ramifications for whether shallow clouds grew vertically into moderately deep clouds that moistened the troposphere and made it conducive to MJO convective onset.

Corresponding author address: Scott W. Powell, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: spowell@atmos.uw.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Processes responsible for widespread development of moderately deep cumulonimbi during a transition period before onset of two large-scale convective events associated with the Madden–Julian oscillation in late 2011 are investigated. A regional model (WRF) is capable of rapidly producing an approximately 3-day-long transition period prior to MJO convective onset similar to observed transition periods, during which moderately deep cumulonimbi were prevalent. During transition periods, evaporation in precipitating elements and horizontal advection of moisture away from the clouds in the nearby clear-air environment contributed to humidification below 400 hPa. Nonprecipitating clouds were present in the model mostly between 900 and 950 hPa and had no major impact on tropospheric moistening. Whether nonprecipitating cumuli grew into moderately deep cumulonimbi largely depended on the buoyancy of updrafts that extended into the 700–850-hPa layer. As mean environmental temperatures decreased, the mean cumulus updraft buoyancy in this layer became less negative. The start of two simulated transition periods were marked by rapid decreases in environmental temperature caused by reduction in environmental subsidence and/or increased cooling by advection or radiation. Small, widespread changes in the difference between 700- and 850-hPa environmental and updraft temperatures—on the order of 0.1 K and less than 0.4 K—had important ramifications for whether shallow clouds grew vertically into moderately deep clouds that moistened the troposphere and made it conducive to MJO convective onset.

Corresponding author address: Scott W. Powell, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: spowell@atmos.uw.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Bellenger, H., K. Yoneyama, M. Katsumata, T. Nishizawa, K. Yasunaga, and R. Shirooka, 2015: Observation of moisture tendencies related to shallow convection. J. Atmos. Sci., 72, 641659, doi:10.1175/JAS-D-14-0042.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939, doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, doi:10.1175/JAS-D-13-038.1.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67, 21712193, doi:10.1175/2010JAS3316.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., J. Wu, A. B. Wolf, Y. Chen, M.-S. Yao, and D. Kim, 2015: Constraints on cumulus parameterization from simulations of observed MJO events. J. Climate, 28, 64196442, doi:10.1175/JCLI-D-14-00832.1.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., J. B. Edson, J. R. Marion, C. W. Fairall, and L. Bariteau, 2015: The MJO and air–sea interaction in TOGA COARE and DYNAMO. J. Climate, 28, 597622, doi:10.1175/JCLI-D-14-00477.1.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, C. D. Burleyson, K.-S. S. Lim, C. N. Long, D. Wu, and G. Thompson, 2014a: Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign. J. Geophys. Res. Atmos., 119, 12 05212 068, doi:10.1002/2014JD022143.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, K. Landu, and C. N. Long, 2014b: Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 6, 938949, doi:10.1002/2014MS000335.

    • Search Google Scholar
    • Export Citation
  • Herman, M. J., Z. Fuchs, D. J. Raymond, and P. Bechtold, 2016: Convectively coupled Kelvin waves: From linear theory to global models. J. Atmos. Sci., 73, 407428, doi:10.1175/JAS-D-15-0153.1.

    • Search Google Scholar
    • Export Citation
  • Hollars, S., Q. Fu, J. Comstock, and T. Ackerman, 2004: Comparison of cloud-top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmos. Res., 72, 169186, doi:10.1016/j.atmosres.2004.03.015.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823839, doi:10.1175/1520-0469(1990)047<0823:TIOATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shepard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, J. H. Ruppert Jr., and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, doi:10.1175/JAS-D-14-0202.1.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. A. Houze Jr., 1999: Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool: An airborne Doppler radar survey. Quart. J. Roy. Meteor. Soc., 125, 11651207, doi:10.1002/qj.1999.49712555605.

    • Search Google Scholar
    • Export Citation
  • Knutson, R. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436, doi:10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2010: Linear response function of a cumulus ensemble to temperature and moisture perturbations and implications for the dynamics of convectively coupled waves. J. Atmos. Sci., 67, 941962, doi:10.1175/2009JAS3260.1.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J. Atmos. Sci., 37, 24442457, doi:10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and B. O. Wolding, 2015: Initiation of an intraseasonal oscillation in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 7, 19561976, doi:10.1002/2015MS000495.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., S. C. van den Heever, and G. L. Stephens, 2008: Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophys. Res. Lett., 35, L08802, doi:10.1029/2007GL033029.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2013: The cloud population and onset of the Madden-Julian oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015a: The effect of dry large-scale vertical motions on initial MJO convective onset. J. Geophys. Res. Atmos., 120, 47834805, doi:10.1002/2014JD022961.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015b: Evolution of convective echo top heights observed by TRMM radar over the Indian Ocean and Maritime Continent during DYNAMO. J. Geophys. Res. Atmos., 120, 39063919, doi:10.1002/2014JD022934.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., R. A. Houze Jr., A. Kumar, and S. A. McFarlane, 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 26622681, doi:10.1175/JAS-D-11-0251.1.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., R. A. Houze Jr., and S. R. Brodzik, 2016: Rainfall-type categorization of radar echoes using polar coordinate reflectivity data. J. Atmos. Oceanic Technol., 33, 523538, doi:10.1175/JTECH-D-15-0135.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, doi:10.1175/MWR-D-15-0058.1.

  • Ray, P., and T. Li, 2013: Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state. J. Atmos. Sci., 70, 876893, doi:10.1175/JAS-D-12-0153.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Z. Fuchs, 2007: Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus, 59A, 627640, doi:10.1111/j.1600-0870.2007.00268.x.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the pre-onset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 16221647, doi:10.1175/JAS-D-14-0218.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Takemi, T., 2015: Relationship between cumulus activity and environmental moisture during the CINDY2011/DYNAMO field experiment as revealed from convection-resolving simulations. J. Meteor. Soc. Japan, 93A, 4158, doi:10.2151/jmsj.2015-035.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land-surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.]

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2010: Transient environmental sensitivities of explicitly simulated tropical convection. J. Atmos. Sci., 67, 923940, doi:10.1175/2009JAS3277.1.

    • Search Google Scholar
    • Export Citation
  • Ulate, M., C. Zhang, and J. Dudhia, 2015: Role of water vapor and convection-circulation decoupling in MJO simulations by a tropical channel model. J. Adv. Model. Earth Syst., 7, 692711, doi:10.1002/2014MS000393.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2011: Theories. Intraseasonal Variability of the Atmosphere-Ocean Climate System, 2nd ed., W. K.-M. Lau and D. E. Waliser, Eds., Springer, 335–398.

  • Wang, S., and A. H. Sobel, 2012: Impact of imposed drying on deep convection in a cloud-resolving model. J. Geophys. Res., 117, D02112, doi:10.1029/2011JD016847.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, A. Fridland, Z. Feng, J. M. Comstock, P. Minnis, and M. L. Nordeen, 2015a: Simulations of cloud-radiation interaction using large-scale forcing derived from the CINDY/DYNAMO northern sounding array. J. Adv. Model. Earth Syst., 7, 14721498, doi:10.1002/2015MS000461.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, F. Zhang, Q. Sun, Y. Yue, and L. Zhou, 2015b: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, doi:10.1175/JCLI-D-14-00294.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2016: Time scales of shallow-to-deep convective transition associated with the onset of Madden-Julian oscillations. Geophys. Res. Lett., 43, 28802888, doi:10.1002/2016GL068269.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zermeño-Díaz, D., C. Zhang, P. Kollias, and H. Kalesse, 2015: The role of shallow cloud moistening in MJO and non-MJO convective events over the ARM Manus site. J. Atmos. Sci., 72, 47974820, doi:10.1175/JAS-D-14-0322.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, doi:10.1175/JCLI-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 1998: The 600–800-mb minimum in tropical cloudiness observed during TOGA COARE. J. Atmos. Sci., 55, 22202228, doi:10.1175/1520-0469(1998)055<2220:TMMITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 492 188 46
PDF Downloads 288 80 11