An Assessment of the Flux Profile Method for Determining Air–Sea Momentum and Enthalpy Fluxes from Dropsonde Data in Tropical Cyclones

David H. Richter Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana

Search for other papers by David H. Richter in
Current site
Google Scholar
PubMed
Close
,
Rachel Bohac Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana

Search for other papers by Rachel Bohac in
Current site
Google Scholar
PubMed
Close
, and
Daniel P. Stern University Corporation for Atmospheric Research, Monterey, California

Search for other papers by Daniel P. Stern in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An analysis of the reliability of using dropsonde profile data to compute surface flux coefficients of momentum and heat is performed. Monin–Obukhov (MO) similarity theory forms the basis for the flux profile method, where mean profiles of momentum, temperature, and moisture are used to estimate surface fluxes, from which bulk flux coefficients can then be determined given surface conditions. The robustness of this method is studied in terms of its sensitivity to internal, method-based parameters, as well as the uncertainty due to variability in the measurements and errors in the estimates of surface conditions, particularly sea surface temperature. In addition, “virtual sondes” tracked through a high-resolution large-eddy simulation of an idealized tropical cyclone are used to evaluate the flux profile method’s ability to recover known surface flux coefficients given known, prescribed surface conditions; this provides a test of whether or not MO assumptions are violated and under which regions they hold. Overall, it is determined that the flux profile method is only accurate within 50% and 200% for the drag coefficient CD and enthalpy flux coefficient CK, respectively, and thus is limited in its ability to quantitatively refine model estimates beyond typically used values. Factors such as proximity to the storm center can cause significant errors in both CD and CK.

Corresponding author address: David Richter, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556. E-mail: david.richter.26@nd.edu

Abstract

An analysis of the reliability of using dropsonde profile data to compute surface flux coefficients of momentum and heat is performed. Monin–Obukhov (MO) similarity theory forms the basis for the flux profile method, where mean profiles of momentum, temperature, and moisture are used to estimate surface fluxes, from which bulk flux coefficients can then be determined given surface conditions. The robustness of this method is studied in terms of its sensitivity to internal, method-based parameters, as well as the uncertainty due to variability in the measurements and errors in the estimates of surface conditions, particularly sea surface temperature. In addition, “virtual sondes” tracked through a high-resolution large-eddy simulation of an idealized tropical cyclone are used to evaluate the flux profile method’s ability to recover known surface flux coefficients given known, prescribed surface conditions; this provides a test of whether or not MO assumptions are violated and under which regions they hold. Overall, it is determined that the flux profile method is only accurate within 50% and 200% for the drag coefficient CD and enthalpy flux coefficient CK, respectively, and thus is limited in its ability to quantitatively refine model estimates beyond typically used values. Factors such as proximity to the storm center can cause significant errors in both CD and CK.

Corresponding author address: David Richter, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556. E-mail: david.richter.26@nd.edu
Save
  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440, doi:10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

  • Andreas, E. L, 2010: Spray-mediated enthalpy flux to the atmosphere and salt flux to the ocean in high winds. J. Phys. Oceanogr., 40, 608619, doi:10.1175/2009JPO4232.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2011: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 14351445, doi:10.1175/2011JAS3714.1.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797, doi:10.1175/MWR-D-11-00007.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, doi:10.1175/JAS-D-11-0276.1.

    • Search Google Scholar
    • Export Citation
  • Bi, X., and Coauthors, 2015: Observed drag coefficients in high winds in the near offshore of the South China Sea. J. Geophys. Res. Atmos., 120, 64446459, doi:10.1002/2015JD023172.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, doi:10.1175/MWR-D-11-00231.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2013: Comments on sensitivity of tropical-cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 139, 19571960, doi:10.1002/qj.2066.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, doi:10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2013: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 14051418, doi:10.1175/BAMS-D-12-00104.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., 2015: The formation of moist vortices and tropical cyclones in idealized simulations. J. Atmos. Sci., 72, 34993516, doi:10.1175/JAS-D-15-0027.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air–sea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 00112 016, doi:10.1029/95JC03796.

    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 2008: Physical Hydrology. 2nd ed. Waveland Press, 646 pp.

  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115, doi:10.1175/JAS3889.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, doi:10.1175/JAS3887.1.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, doi:10.1175/MWR-D-12-00274.1.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2014: Sensitivity of tropical cyclone simulations to parametric uncertainties in air–sea fluxes and implications for parameter estimation. Mon. Wea. Rev., 142, 22902308, doi:10.1175/MWR-D-13-00208.1.

    • Search Google Scholar
    • Export Citation
  • Haus, B. K., D. Jeong, M. A. Donelan, J. A. Zhang, and I. Savelyev, 2010: Relative rates of sea–air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, doi:10.1029/2009GL042206.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, doi:10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air–sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, doi:10.1126/science.1136466.

    • Search Google Scholar
    • Export Citation
  • Jeong, D., B. K. Haus, and M. A. Donelan, 2012: Enthalpy transfer across the air–water interface in high winds including spray. J. Atmos. Sci., 69, 27332748, doi:10.1175/JAS-D-11-0260.1.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2007: Aerodynamic roughness of the sea surface at high winds. Bound.-Layer Meteor., 125, 289303, doi:10.1007/s10546-007-9184-7.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176, doi:10.1007/s10546-004-3647-x.

    • Search Google Scholar
    • Export Citation
  • Mangarella, P. A., A. J. Chambers, R. L. Street, and E. Y. Hsu, 1973: Laboratory studies of evaporation and energy transfer through a wavy air–water interface. J. Phys. Oceanogr., 3, 93101, doi:10.1175/1520-0485(1973)003<0093:LSOEAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1971: Statistical Fluid Mechanics. Vol. 1. Dover Publications, 769 pp.

  • Montgomery, M. T., R. K. Smith, and S. V. Nguyen, 2010: Sensitivity of tropical-cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 19451953, doi:10.1002/qj.702.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2014: Impact of sea spray on air–sea fluxes. Part II: Feedback effects. J. Phys. Oceanogr., 44, 28352853, doi:10.1175/JPO-D-13-0246.1.

    • Search Google Scholar
    • Export Citation
  • Potter, H., H. C. Graber, N. J. Williams, C. O. Collins, R. J. Ramos, and W. M. Drennan, 2015: In situ measurements of momentum fluxes in typhoons. J. Atmos. Sci., 72, 104118, doi:10.1175/JAS-D-14-0025.1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean under hurricane winds. J. Geophys. Res. Oceans, 119, 3051, doi:10.1002/2013JC009289.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Richter, D. H., and D. P. Stern, 2014: Evidence of spray-mediated air–sea enthalpy flux within tropical cyclones. Geophys. Res. Lett., 41, 29973003, doi:10.1002/2014GL059746.

    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., T. Vukicevic, and B. Tang, 2014: Adopting model uncertainties for tropical cyclone intensity prediction. Mon. Wea. Rev., 142, 7278, doi:10.1175/MWR-D-13-00186.1.

    • Search Google Scholar
    • Export Citation
  • Rosenthal, S. L., 1971: The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions, and domain size. Mon. Wea. Rev., 99, 767777, doi:10.1175/1520-0493(1971)099<0767:TROATC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2014: On the existence of the logarithmic surface layer in the inner core of hurricanes. Quart. J. Roy. Meteor. Soc., 140, 7281, doi:10.1002/qj.2121.

    • Search Google Scholar
    • Export Citation
  • Sraj, I., and Coauthors, 2013: Bayesian inference of drag parameters using AXBT data from Typhoon Fanapi. Mon. Wea. Rev., 141, 23472367, doi:10.1175/MWR-D-12-00228.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, doi:10.1146/annurev-fluid-121108-145541.

    • Search Google Scholar
    • Export Citation
  • Takagaki, N., S. Komori, N. Suzuki, K. Iwano, T. Kuramoto, S. Shimada, R. Kurose, and K. Takahashi, 2012: Strong correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind speeds. Geophys. Res. Lett., 39, L23604, doi:10.1029/2012GL053988.

    • Search Google Scholar
    • Export Citation
  • Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov, 2012: Laboratory and theoretical modeling of air–sea momentum transfer under severe wind conditions. J. Geophys. Res., 117, C00J21, doi:10.1029/2011JC007778.

    • Search Google Scholar
    • Export Citation
  • Veron, F., 2015: Ocean spray. Annu. Rev. Fluid Mech., 47, 507538, doi:10.1146/annurev-fluid-010814-014651.

  • Vickers, D., L. Mahrt, and E. L Andreas, 2013: Estimates of the 10-m neutral sea surface drag coefficient from aircraft eddy-covariance measurements. J. Phys. Oceanogr., 43, 301310, doi:10.1175/JPO-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z.-K., C.-X. Liu, Q. Li, G.-F. Dai, Q.-T. Song, and W.-H. Lv, 2015: Typhoon air–sea drag coefficient in coastal regions. J. Geophys. Res. Oceans, 120, 716727, doi:10.1002/2014JC010283.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 593 248 23
PDF Downloads 425 132 21