On the Role of the African Topography in the South Asian Monsoon

Ho-Hsuan Wei California Institute of Technology, Pasadena, California

Search for other papers by Ho-Hsuan Wei in
Current site
Google Scholar
PubMed
Close
and
Simona Bordoni California Institute of Technology, Pasadena, California

Search for other papers by Simona Bordoni in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Somali jet, a strong low-level cross-equatorial flow concentrated in a narrow longitudinal band near the coast of Somalia, is a key feature of the South Asian monsoon (SAM) circulation. Previous work has emphasized the role of the East African highlands in strengthening and concentrating the jet. However, the fundamental dynamics of the jet remains debated, as does its relation to the SAM precipitation. In this study, numerical experiments with modified topography over Africa are conducted with the GFDL atmospheric model, version 2.1 (AM2.1), general circulation model (GCM) to examine the influence of topography on the Somali jet and the SAM precipitation. It is found that when the African topography is removed, the SAM precipitation moderately increases in spite of a weakening of the cross-equatorial Somali jet. The counterintuitive precipitation increase is related to lower-level cyclonic wind anomalies, and associated meridional moisture convergence, which develop over the Arabian Sea in the absence of the African topography. Potential vorticity (PV) budget analyses along particle trajectories show that this cyclonic anomaly primarily arises because, in the absence of the blocking effect by the African topography and with weaker cross-equatorial flow, air particles originate from higher latitudes with larger background planetary vorticity and thus larger PV.

Corresponding author address: Ho-Hsuan Wei, California Institute of Technology, 1200 E. California Blvd., MC131-24, Pasadena, CA 91125. E-mail: hwei@caltech.edu

Abstract

The Somali jet, a strong low-level cross-equatorial flow concentrated in a narrow longitudinal band near the coast of Somalia, is a key feature of the South Asian monsoon (SAM) circulation. Previous work has emphasized the role of the East African highlands in strengthening and concentrating the jet. However, the fundamental dynamics of the jet remains debated, as does its relation to the SAM precipitation. In this study, numerical experiments with modified topography over Africa are conducted with the GFDL atmospheric model, version 2.1 (AM2.1), general circulation model (GCM) to examine the influence of topography on the Somali jet and the SAM precipitation. It is found that when the African topography is removed, the SAM precipitation moderately increases in spite of a weakening of the cross-equatorial Somali jet. The counterintuitive precipitation increase is related to lower-level cyclonic wind anomalies, and associated meridional moisture convergence, which develop over the Arabian Sea in the absence of the African topography. Potential vorticity (PV) budget analyses along particle trajectories show that this cyclonic anomaly primarily arises because, in the absence of the blocking effect by the African topography and with weaker cross-equatorial flow, air particles originate from higher latitudes with larger background planetary vorticity and thus larger PV.

Corresponding author address: Ho-Hsuan Wei, California Institute of Technology, 1200 E. California Blvd., MC131-24, Pasadena, CA 91125. E-mail: hwei@caltech.edu
Save
  • Anderson, D. L. T., 1976: The low-level jet as a western boundary current. Mon. Wea. Rev., 104, 907–921, doi:10.1175/1520-0493(1976)104<0907:TLLJAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 4641–4673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and K. A. Emanuel, 2009: Annual intensification of the Somali jet in a quasi-equilibrium framework: Observational composites. Quart. J. Roy. Meteor. Soc., 135, 319–335, doi:10.1002/qj.388.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218–222, doi:10.1038/nature08707.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515–519, doi:10.1038/ngeo248.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., R. S. Nanjundiah, and J. Srinivasan, 2002: Role of Asian and African orography in Indian summer monsoon. Geophys. Res. Lett., 29, 1989, doi:10.1029/2002GL015522.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., R. S. Nanjundiah, and J. Srinivasan, 2006: Theoretical aspects of the onset of Indian summer monsoon from perturbed orography simulations in a GCM. Ann. Geophys., 24, 2075–2089, doi:10.5194/angeo-24-2075-2006.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., R. S. Nanjundiah, and J. Srinivasan, 2009: Impact of African orography and the Indian summer monsoon on the low-level Somali jet. Int. J. Climatol., 29, 983–992, doi:10.1002/joc.1720.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., A. Hall, and A. J. Broccoli, 2004: The importance of precessional signals in the tropical climate. Climate Dyn., 22, 327–341, doi:10.1007/s00382-003-0375-8.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low-level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 362–380, doi:10.1002/qj.49709540409.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429–467, doi:10.1146/annurev.earth.31.100901.141251.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., and P. M. Woiceshyn, 2001: Somali jet in the Arabian Sea, El Niño, and India rainfall. J. Climate, 14, 434–441, doi:10.1175/1520-0442(2001)014<0434:SJITAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian summer monsoon. Part I: The global scale. J. Atmos. Sci., 52, 1329–1340, doi:10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., J. Molinari, and H. L. Pan, 1976: Numerical simulation of the Somali jet. J. Atmos. Sci., 33, 2350–2362, doi:10.1175/1520-0469(1976)033<2350:NSOTSJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358–375, doi:10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1994: Coupled land–ocean–atmosphere processes and South Asian monsoon variability. Science, 266, 263–267, doi:10.1126/science.266.5183.263.

    • Search Google Scholar
    • Export Citation
  • Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Climate, 23, 4416–4428, doi:10.1175/2010JCLI3505.1.

    • Search Google Scholar
    • Export Citation
  • Paegle, J., and J. E. Geisler, 1986: The effect of East African topography on flow driven by zonally symmetric forcing. J. Atmos. Sci., 43, 1862–1872, doi:10.1175/1520-0469(1986)043<1862:TEOEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1995: A model of the Asian summer monsoon. Part II: Cross-equatorial flow and PV behavior. J. Atmos. Sci., 52, 1341–1356, doi:10.1175/1520-0469(1995)052<1341:AMOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sashegyi, K. D., and J. E. Geisler, 1987: A linear model study of cross-equatorial flow forced by summer monsoon heat sources. J. Atmos. Sci., 44, 1706–1722, doi:10.1175/1520-0469(1987)044<1706:ALMSOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., H. Spencer, B. Hoskins, P. Berrisford, and E. Black, 2005: The meteorology of the western Indian Ocean, and the influence of the East African Highlands. Philos. Trans. Roy. Soc. London, A363, 25–42, doi:10.1098/rsta.2004.1473.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 1403–1420, doi:10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walker, J. M., S. Bordoni, and T. Schneider, 2015: Interannual variability in the large-scale dynamics of the South Asian summer monsoon. J. Climate, 28, 3731–3750, doi:10.1175/JCLI-D-14-00612.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1987: The elementary monsoon. Monsoons, J. S. Fein and P. L. Stephens, Eds., Wiley, 3–32.

  • Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1320 559 90
PDF Downloads 652 102 11