• Abarca, S. F., , and M. T. Montgomery, 2014: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 71, 37233738, doi:10.1175/JAS-D-14-0018.1.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., , and R. J. Pasch, 1995: Atlantic tropical systems of 1993. Mon. Wea. Rev., 123, 887896, doi:10.1175/1520-0493(1995)123<0887:ATSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, doi:10.1175/MWR-D-11-00231.1.

    • Search Google Scholar
    • Export Citation
  • Carrasco, C. A., , C. W. Landsea, , and Y.-L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, doi:10.1175/WAF-D-13-00092.1.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T., , and J. C. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811824, doi:10.1175/MWR-D-10-05062.1.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T., , and J. C. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 39854007, doi:10.1175/MWR-D-12-00204.1.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T., , and J. C. Chan, 2014: Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 140, 22352248, doi:10.1002/qj.2292.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T., , and J. C. Chan, 2015: Global climatology of tropical cyclone size as inferred from QuikSCAT data. Int. J. Climatol., 35, 48434848, doi:10.1002/joc.4307.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and K. Emanuel, 2014: Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci., 71, 16631680, doi:10.1175/JAS-D-13-0155.1.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and J. Vigh, 2014: QSCAT-R: The QuikSCAT tropical cyclone radial structure dataset. NCAR Tech. Note TN-513+STR, 27 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-882.pdf.]

  • Chavas, D. R., , N. Lin, , and K. Emanuel, 2015: A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci., 72, 36473662, doi:10.1175/JAS-D-15-0014.1.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , N. Lin, , W. Dong, , and Y. Lin, 2016: Observed tropical cyclone size revisited. J. Climate, 29, 29232939, doi:10.1175/JCLI-D-15-0731.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., , M. DeMaria, , and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, doi:10.1175/JAM2429.1.

    • Search Google Scholar
    • Export Citation
  • Donelan, M., , B. Haus, , N. Reul, , W. Plant, , M. Stiassnie, , H. Graber, , O. Brown, , and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995a: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, doi:10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995b: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, doi:10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and S. B., Eds., Cambridge University Press, 165–192.

  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, doi:10.1175/JAS-D-11-0177.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, doi:10.1175/JAS-D-10-05024.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and M. Zhao, 2008: Horizontally homogeneous rotating radiative–convective equilibria at GCM resolution. J. Atmos. Sci., 65, 20032013, doi:10.1175/2007JAS2604.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, doi:10.1175/2009MWR2679.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, doi:10.1002/qj.49711046510.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , J. I. Belanger, , and A. Fritz, 2010: A revised model for radial profiles of hurricane winds. Mon. Wea. Rev., 138, 43934401, doi:10.1175/2010MWR3317.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , M. DeMaria, , and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830, doi:10.1175/JAS-D-13-046.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., , and D. S. Nolan, 2014: Reply to comments on how does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 71, 46924704, doi:10.1175/JAS-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., , and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, doi:10.1002/2013MS000253.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 7188, doi:10.1175/WAF965.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , S. P. Longmore, , and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., , J. Sirutis, , M. Zhao, , R. Tuleya, , M. Bender, , G. Vecchi, , G. Villarini, , and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, doi:10.1175/JCLI-D-15-0129.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , J. A. Knaff, , H. I. Berger, , D. C. Herndon, , T. A. Cram, , C. S. Velden, , R. J. Murnane, , and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, doi:10.1175/WAF985.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-S., , K. K. Cheung, , W.-T. Fang, , and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 32073223, doi:10.1175/2010MWR3023.1.

    • Search Google Scholar
    • Export Citation
  • Lignieres, F., , F. Califano, , and A. Mangeney, 1999: Shear layer instability in a highly diffusive stably stratified atmosphere. arXiv.org, 11 pp. [Available online at http://arxiv.org/abs/astro-ph/9908184.]

  • Lin, N., , P. Lane, , K. A. Emanuel, , R. M. Sullivan, , and J. P. Donnelly, 2014: Heightened hurricane surge risk in northwest Florida revealed from climatological-hydrodynamic modeling and paleorecord reconstruction. J. Geophys. Res. Atmos., 119, 86068623, doi:10.1002/2014JD021584.

    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898, doi:10.1175/2008MWR2268.1.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, doi:10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., , M. DeMaria, , J. Knaff, , J. P. Kossin, , and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, doi:10.1175/WAF955.1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , S. H. Houston, , L. R. Amat, , and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, doi:10.1016/S0167-6105(98)00131-7.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., , and D. R. Chavas, 2015: Uniformly rotating global radiative-convective equilibrium in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst., 7, 19381955, doi:10.1002/2015MS000519.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, doi:10.1175/JAS-D-11-0204.1.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., , J. P. Kossin, , and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, doi:10.1175/MWR-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R., 1980: Tropical cyclone eye dynamics. J. Atmos. Sci., 37, 12271232, doi:10.1175/1520-0469(1980)037<1227:TCED>2.0.CO;2.

  • Stern, D. P., , and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, doi:10.1175/2009JAS2916.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , J. R. Brisbois, , and D. S. Nolan, 2014: An expanded dataset of hurricane eyewall sizes and slopes. J. Atmos. Sci., 71, 27472762, doi:10.1175/JAS-D-13-0302.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , J. L. Vigh, , D. S. Nolan, , and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, doi:10.1175/JAS-D-14-0261.1.

    • Search Google Scholar
    • Export Citation
  • Stiles, B. W., , R. E. Danielson, , W. L. Poulsen, , M. J. Brennan, , S. Hristova-Veleva, , T.-P. Shen, , and A. G. Fore, 2013: Optimized tropical cyclone winds from QuikSCAT: A neural network approach. IEEE Trans. Geosci. Remote Sens., 52, 74187434, doi:10.1109/TGRS.2014.2312333.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., , J. A. Knaff, , and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, doi:10.1175/MWR-D-11-00108.1.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C., , and W. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 10321043, doi:10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , and Y. Wang, 2010: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157, doi:10.1175/2010MWR3335.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 19
PDF Downloads 104 104 14

A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field. Part II: Wind Field Variability

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

Part I of this work developed a simple physical model for the complete radial structure of the low-level azimuthal wind field in a tropical cyclone that compared well with observations. However, wind field variability in the model is tied principally to its external parameters given by the maximum wind speed and the radius of maximum wind, the latter of which lacks a credible independent physical model for its variability. Here the authors explore the modes of variability that arise from the alternative specification of the model, which takes the outer radius in lieu of the radius of maximum wind. Nondimensionalization of the model reveals two theoretical modes of structural variability in absolute angular momentum that are shown to closely match observations. These two modes correspond to three modes of wind field variability associated with variations in intensity, outer storm size, and latitude. These wind field modes are demonstrated to mirror the dominant modes of variability found in nature, in particular the intrastorm variation of inner-core structure and the interstorm variation of overall storm size. In combination, the model offers a credible physical solution for the complete time-dependent tropical cyclone wind field in conjunction with the external specification of intensity, outer size, and latitude. More broadly, the model offers theoretical and conceptual insight into the nature of the tropical cyclone wind field, including the oft-conflated terms “size” and “structure” and their distinct variabilities.

Corresponding author address: Daniel R. Chavas, Purdue University, Department of Earth, Atmospheric, and Planetary Sciences, 550 Stadium Mall Drive, HAMP 3221, West Lafayette, IN 47907. E-mail: drchavas@gmail.com

Abstract

Part I of this work developed a simple physical model for the complete radial structure of the low-level azimuthal wind field in a tropical cyclone that compared well with observations. However, wind field variability in the model is tied principally to its external parameters given by the maximum wind speed and the radius of maximum wind, the latter of which lacks a credible independent physical model for its variability. Here the authors explore the modes of variability that arise from the alternative specification of the model, which takes the outer radius in lieu of the radius of maximum wind. Nondimensionalization of the model reveals two theoretical modes of structural variability in absolute angular momentum that are shown to closely match observations. These two modes correspond to three modes of wind field variability associated with variations in intensity, outer storm size, and latitude. These wind field modes are demonstrated to mirror the dominant modes of variability found in nature, in particular the intrastorm variation of inner-core structure and the interstorm variation of overall storm size. In combination, the model offers a credible physical solution for the complete time-dependent tropical cyclone wind field in conjunction with the external specification of intensity, outer size, and latitude. More broadly, the model offers theoretical and conceptual insight into the nature of the tropical cyclone wind field, including the oft-conflated terms “size” and “structure” and their distinct variabilities.

Corresponding author address: Daniel R. Chavas, Purdue University, Department of Earth, Atmospheric, and Planetary Sciences, 550 Stadium Mall Drive, HAMP 3221, West Lafayette, IN 47907. E-mail: drchavas@gmail.com
Save