Wave–Mean Flow Interactions and the Maintenance of Superrotation in a Terrestrial Atmosphere

João Rafael Dias Pinto Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Cidade Universitária, São Paulo, Brazil

Search for other papers by João Rafael Dias Pinto in
Current site
Google Scholar
PubMed
Close
and
Jonathan Lloyd Mitchell Department of Earth, Planetary, and Space Sciences, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jonathan Lloyd Mitchell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The interplay between mean meridional circulation and transient eddies through wave–mean flow interaction processes defines the general behavior of any planetary atmospheric circulation. Under a higher-Rossby-number regime, equatorward momentum transports provided by large-scale disturbances generate a strong zonal flow at the equatorial region. At intermediate Rossby numbers, equatorial Kelvin waves play a leading role in maintaining a superrotating jet over the equator. However, at high Rossby numbers, the Kelvin wave only provides equatorward momentum fluxes during spinup, and the wave–mean flow process that maintains this strongly superrotating state has yet to be identified. This study presents a comprehensive analysis of the tridimensional structure and life cycle of atmospheric waves and their interaction with the mean flow, which maintains the strong, long-lived superrotating state in a higher-Rossby-number-regime atmosphere. The results show that the mean zonal superrotating circulation is maintained by the dynamical interaction between mixed baroclinic–barotropic Rossby wave modes via low-frequency variations of the zonal-mean state in short and sporadic periods of stronger instability. The modulation of amplitude of the equatorial and extratropical Rossby waves suggests a nonlinear mechanism of eddy–eddy interaction between these modes.

Corresponding author address: João Rafael Dias Pinto, Dept. of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, SP, CEP 05508-090, Brazil. E-mail: joaorafaeldias@gmail.com; jonmitch@ucla.edu

Abstract

The interplay between mean meridional circulation and transient eddies through wave–mean flow interaction processes defines the general behavior of any planetary atmospheric circulation. Under a higher-Rossby-number regime, equatorward momentum transports provided by large-scale disturbances generate a strong zonal flow at the equatorial region. At intermediate Rossby numbers, equatorial Kelvin waves play a leading role in maintaining a superrotating jet over the equator. However, at high Rossby numbers, the Kelvin wave only provides equatorward momentum fluxes during spinup, and the wave–mean flow process that maintains this strongly superrotating state has yet to be identified. This study presents a comprehensive analysis of the tridimensional structure and life cycle of atmospheric waves and their interaction with the mean flow, which maintains the strong, long-lived superrotating state in a higher-Rossby-number-regime atmosphere. The results show that the mean zonal superrotating circulation is maintained by the dynamical interaction between mixed baroclinic–barotropic Rossby wave modes via low-frequency variations of the zonal-mean state in short and sporadic periods of stronger instability. The modulation of amplitude of the equatorial and extratropical Rossby waves suggests a nonlinear mechanism of eddy–eddy interaction between these modes.

Corresponding author address: João Rafael Dias Pinto, Dept. of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, SP, CEP 05508-090, Brazil. E-mail: joaorafaeldias@gmail.com; jonmitch@ucla.edu
Save
  • Belton, M. J. S., G. R. Smith, G. Schubert, and A. D. Del Genio, 1976: Cloud patterns, waves and convection in the Venus atmosphere. J. Atmos. Sci., 33, 13941417, doi:10.1175/1520-0469(1976)033<1394:CPWACI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1978: The effects of latitudinal shear on equatorial waves. Part II: Applications to the atmosphere. J. Atmos. Sci., 35, 22592267, doi:10.1175/1520-0469(1978)035<2259:TEOLSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brennan, F. E., and D. G. Vincent, 1980: Zonal and eddy components of the synoptic-scale energy budget during intensification of Hurricane Carmen (1974). Mon. Wea. Rev., 108, 954965, doi:10.1175/1520-0493(1980)108<0954:ZAECOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A., and W. B. Rossow, 1990: Planetary-scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci., 47, 293318, doi:10.1175/1520-0469(1990)047<0293:PSWATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dias Pinto, J. R., and J. L. Mitchell, 2014: Atmospheric superrotation in an idealized GCM: Parameter dependence of the eddy response. Icarus, 238, 93109, doi:10.1016/j.icarus.2014.04.036.

    • Search Google Scholar
    • Export Citation
  • Domaracki, A., and A. Z. Loesch, 1977: Nonlinear interactions among equatorial waves. J. Atmos. Sci., 34, 486498, doi:10.1175/1520-0469(1977)034<0486:NIAEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gierasch, P. J., 1975: Meridional circulation and the maintenance of Venus atmospheric rotation. J. Atmos. Sci., 32, 10381044, doi:10.1175/1520-0469(1975)032<1038:MCATMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., 1993: Global Atmospheric Circulations: Observations and Theories. Oxford University Press, 452 pp.

  • Hayashi, Y., 1982: Space–time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60, 156170.

  • Held, I. M., and M. J. Suarez, 1994: A proposal for intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26, 841853, doi:10.1175/1520-0469(1969)026<0841:DOTAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., O. Talagrand, R. Sadourny, R. Courtin, D. Gautier, and C. P. McKay, 1995: Numerical simulation of the general circulation of the atmosphere of Titan. Icarus, 117, 358374, doi:10.1006/icar.1995.1162.

    • Search Google Scholar
    • Export Citation
  • Iga, S.-I., and Y. Matsuda, 2005: Shear instability in a shallow water model with implications for the Venus atmosphere. J. Atmos. Sci., 62, 25142527, doi:10.1175/JAS3484.1.

    • Search Google Scholar
    • Export Citation
  • Imamura, T., 2006: Meridional propagation of planetary-scale waves in vertical shear: Implication for the Venus atmosphere. J. Atmos. Sci., 63, 16231636, doi:10.1175/JAS3684.1.

    • Search Google Scholar
    • Export Citation
  • Kouyama, T., T. Imamura, M. Nakamura, T. Satoh, and Y. Futana, 2012: Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique. Planet. Space Sci., 60, 207216, doi:10.1016/j.pss.2011.08.008.

    • Search Google Scholar
    • Export Citation
  • Laraia, A. L., and T. Schneider, 2015: Superrotation in terrestrial atmospheres. J. Atmos. Sci., 72, 42814296, doi:10.1175/JAS-D-15-0030.1.

    • Search Google Scholar
    • Export Citation
  • Lebonnois, S., F. Hourdin, V. Eymet, A. Crespin, R. Fournier, and F. Forget, 2010: Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res., 115, E06006, doi:10.1029/2009JE003458.

    • Search Google Scholar
    • Export Citation
  • Lora, J. M., and J. L. Mitchell, 2015: Titan’s asymmetric lake distribution mediated by methane transport due to atmospheric eddies. Geophys. Res. Lett., 42, 62136220, doi:10.1002/2015GL064912.

    • Search Google Scholar
    • Export Citation
  • Lora, J. M., J. I. Lunine, J. L. Russell, and A. G. Hayes, 2014: Simulations of Titan’s paleoclimate. Icarus, 243, 264273, doi:10.1016/j.icarus.2014.08.042.

    • Search Google Scholar
    • Export Citation
  • Lora, J. M., J. I. Lunine, and J. L. Russell, 2015: GCM simulations of Titan’s middle and lower atmosphere and comparison to observations. Icarus, 250, 516528, doi:10.1016/j.icarus.2014.12.030.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1967: The nature and theory of the general circulation of the atmosphere. WMO Tech. Note 115, 161 pp.

  • Majda, A. J., and J. A. Biello, 2003: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci., 60, 18091821, doi:10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motion in the equatorial area. J. Meteor. Soc. Japan, 44, 2443.

  • Mitchell, J. L., and G. K. Vallis, 2010: The transition to superrotation in terrestrial atmosphere. J. Geophys. Res., 115, E12008, doi:10.1029/2010JE003587.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. L., M. Ádámkovics, R. Caballero, and E. Turtle, 2011: Locally enhanced precipitation organized by planetary-scale waves on Titan. Nat. Geosci., 4, 589592, doi:10.1038/ngeo1219.

    • Search Google Scholar
    • Export Citation
  • Newman, C., C. Lee, Y. Lian, M. I. Richardson, and A. D. Toigo, 2011: Stratospheric superrotation in the TitanWRF model. Icarus, 213, 636654, doi:10.1016/j.icarus.2011.03.025.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Potter, S. F., G. K. Vallis, and J. L. Mitchell, 2014: Spontaneous superrotation and the role of Kelvin waves in an idealized dry GCM. J. Atmos. Sci., 71, 596614, doi:10.1175/JAS-D-13-0150.1.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and G. Williams, 1979: Large-scale motion in Venus stratosphere. J. Atmos. Sci., 36, 377389, doi:10.1175/1520-0469(1979)036<0377:LSMITV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sánchez-Lavega, A., and Coauthors, 2008: Variable winds on Venus mapped in three dimensions. Geophys. Res. Lett., 35, L13204, doi:10.1029/2008GL033817.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50, 12111227, doi:10.1175/1520-0469(1993)050<1211:ESAMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, M. D., P. J. Gierasch, and P. J. Schinder, 1992: A global traveling wave on Venus. Science, 256, 652655, doi:10.1126/science.256.5057.652.

    • Search Google Scholar
    • Export Citation
  • Smith, M. D., P. J. Gierasch, and P. J. Schinder, 1993: Global-scale waves in the Venus atmosphere. J. Atmos. Sci., 50, 40804096, doi:10.1175/1520-0469(1993)050<4080:GSWITV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Ocean Fluid Dynamics. Cambridge University Press, 745 pp.

  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part. I: Stable waves. J. Atmos. Sci., 53, 449467, doi:10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, P., and J. L. Mitchell, 2014: Planetary ageostrophic instability leads to superrotation. Geophys. Res. Lett., 41, 41184126, doi:10.1002/2014GL060345.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2003: Barotropic instability and equatorial superrotation. J. Atmos. Sci., 60, 21362152, doi:10.1175/1520-0469(2003)060<2136:BIAES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part. II: Unstable waves. J. Atmos. Sci., 53, 35893605, doi:10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., and M. Takahashi, 2003: The fully developed superrotation simulated by a general circulation model of a Venus-like atmosphere. J. Atmos. Sci., 60, 561574, doi:10.1175/1520-0469(2003)060<0561:TFDSSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., and M. Takahashi, 2006: Superrotation maintained by meridional circulation and waves in a Venus-like GCM. J. Atmos. Sci., 63, 32963314, doi:10.1175/JAS3859.1.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., and M. Takahashi, 2012: Venusian middle-atmospheric dynamics in the presence of a strong planetary-scale 5.5-day wave. Icarus, 217, 702713, doi:10.1016/j.icarus.2011.06.017.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., and M. Yanai, 1980: Upper tropospheric waves in the tropics. Part I: Dynamical analysis in the wavenumber-frequency domain. J. Atmos. Sci., 37, 283298, doi:10.1175/1520-0469(1980)037<0283:UTWITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and P. J. Webster, 1989: Effects of zonal flows on equatorially trapped waves. J. Atmos. Sci., 46, 36323652, doi:10.1175/1520-0469(1989)046<3632:EOZFOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1889 1610 684
PDF Downloads 218 46 7