• Ackerman, A. S., and et al. , 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, doi:10.1175/2008MWR2582.1.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., , C. Fairall, , D. W. Thomson, , and A. B. White, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, doi:10.1029/GL017i001p00089.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and et al. , 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234258, doi:10.1002/jame.20025.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., , and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, doi:10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., , S. Krueger, , M. Wyant, , P. Bechtold, , E. Van Meijgaard, , B. Stevens, , and J. Teixeira, 1999: A GCSS boundary-layer cloud model intercomparison study of the first Astex Lagrangian experiment. Bound.-Layer Meteor., 93, 341380, doi:10.1023/A:1002005429969.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., , P. N. Blossey, , and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 316337, doi:10.1002/jame.20019.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., , C. S. Bretherton, , and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in Southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791, doi:10.1175/JAS3561.1.

    • Search Google Scholar
    • Export Citation
  • Dal Gesso, S. D., , A. P. Siebesma, , S. R. de Roode, , and J. M. van Wessem, 2014: A mixed-layer model perspective on stratocumulus steady states in a perturbed climate. Quart. J. Roy. Meteor. Soc., 140, 21192131, doi:10.1002/qj.2282.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., , G. L. Stephens, , and S. K. Cox, 1991: Microphysical and radiative properties of marine stratocumulus from tethered balloon measurements. J. Appl. Meteor., 30, 170186, doi:10.1175/1520-0450(1991)030<0170:MARPOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and et al. , 2004: Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case. Quart. J. Roy. Meteor. Soc., 130, 32693296, doi:10.1256/qj.03.139.

    • Search Google Scholar
    • Export Citation
  • EPA, 2004: User’s guide for the AERMOD Meteorological Preprocessor (AERMET). U.S. Environmental Protection Agency Rep. EPA-454/B-03-002, 252 pp. [Available online at https://www3.epa.gov/scram001/7thconf/aermod/aermetugb.pdf.]

  • Fang, M., , B. Albrecht, , V. Ghate, , and P. Kollias, 2014a: Turbulence in continental stratocumulus, Part I: External forcings and turbulence structures. Bound.-Layer Meteor., 150, 341360, doi:10.1007/s10546-013-9873-3.

    • Search Google Scholar
    • Export Citation
  • Fang, M., , B. Albrecht, , V. Ghate, , and P. Kollias, 2014b: Turbulence in continental stratocumulus, Part II: Eddy dissipation rates and large-eddy coherent structures. Bound.-Layer Meteor., 150, 361380, doi:10.1007/s10546-013-9872-4.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., , R. Conzemius, , and D. Mironov, 2004: Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large eddy simulations. J. Atmos. Sci., 61, 281295, doi:10.1175/1520-0469(2004)061<0281:CEIASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garcia, J. R., , and J. P. Mellado, 2014: The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci., 71, 19351955, doi:10.1175/JAS-D-13-0148.1.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., , B. A. Albrecht, , and P. Kollias, 2010: Vertical velocity structure of nonprecipitating continental boundary layer stratocumulus clouds. J. Geophys. Res., 115, D13204, doi:10.1029/2009JD013091.

    • Search Google Scholar
    • Export Citation
  • Ghonima, M. S., , J. R. Norris, , T. Heus, , and J. Kleissl, 2015: Reconciling and validating the cloud thickness and liquid water path tendencies proposed by R. Wood and J. J. van der Dussen et al. J. Atmos. Sci., 72, 20332040, doi:10.1175/JAS-D-14-0287.1.

    • Search Google Scholar
    • Export Citation
  • Goody, R. M., 1995: Principles of Atmospheric Physics and Chemistry. Oxford University Press, 336 pp.

  • Grenier, H., , and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129, 357377, doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and et al. , 2010: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev., 3, 415444, doi:10.5194/gmd-3-415-2010.

    • Search Google Scholar
    • Export Citation
  • Hilliker, J. L., , and J. M. Fritsch, 1999: An observations-based statistical system for warm-season hourly probabilistic forecasts of low ceiling at the San Francisco International Airport. J. Appl. Meteor., 38, 16921705, doi:10.1175/1520-0450(1999)038<1692:AOBSSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iacobellis, S. F., , and D. R. Cayan, 2013: The variability of California summertime marine stratus: Impacts on surface air temperatures. J. Geophys. Res. Atmos., 118, 91059122, doi:10.1002/jgrd.50652.

    • Search Google Scholar
    • Export Citation
  • Ineichen, P., , and R. Perez, 2002: A new airmass independent formulation for the Linke turbidity coefficient. Sol. Energy, 73, 151157, doi:10.1016/S0038-092X(02)00045-2.

    • Search Google Scholar
    • Export Citation
  • Jones, C. R., , C. S. Bretherton, , and P. N. Blossey, 2014: Fast stratocumulus timescale in mixed layer model and large eddy simulation. J. Adv. Model. Earth Syst., 6, 206222, doi:10.1002/2013MS000289.

    • Search Google Scholar
    • Export Citation
  • Joseph, J. H., , W. J. Wiscombe, , and J. A. Weinman, 1976: The Delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, doi:10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kazil, J., , G. Feingold, , and T. Yamaguchi, 2015: Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations. Atmos. Chem. Phys. Discuss., 15, 28 39528 452, doi:10.5194/acpd-15-28395-2015.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., , and B. Albrecht, 2000: The turbulence structure in a continental stratocumulus cloud from millimeter-wavelength radar observations. J. Atmos. Sci., 57, 24172434, doi:10.1175/1520-0469(2000)057<2417:TTSIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., , K. E. Kotenberg, , and N. B. Wood, 2007: An analytic longwave radiation formula for liquid layer clouds. Mon. Wea. Rev., 135, 689699, doi:10.1175/MWR3315.1.

    • Search Google Scholar
    • Export Citation
  • Leon, D. C., , Z. Wang, , and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113, D00A14, doi:10.1029/2008JD009835.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, doi:10.1002/qj.49709440106.

    • Search Google Scholar
    • Export Citation
  • Mathiesen, P., , and J. Kleissl, 2011: Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Sol. Energy, 85, 967977, doi:10.1016/j.solener.2011.02.013.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., , Y. L. Kogan, , and D. M. Schultz, 2010a: Large-eddy observation of post-cold-frontal continental stratocumulus. J. Atmos. Sci., 67, 33683383, doi:10.1175/2010JAS3389.1.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., , Y. L. Kogan, , and D. M. Schultz, 2010: Large-eddy simulation of post-cold-frontal continental stratocumulus. J. Atmos. Sci., 67, 38353853, doi:10.1175/2010JAS3467.1.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2010: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 536, doi:10.1017/S0022112010002831.

  • Myers, T. A., , and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, doi:10.1175/JCLI-D-12-00736.1.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783820, doi:10.1002/qj.49711046603.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., , and J. D. Turton, 1986: An observational study of the structure of stratiform cloud sheets: Part II. Entrainment. Quart. J. Roy. Meteor. Soc., 112, 461480, doi:10.1002/qj.49711247210.

    • Search Google Scholar
    • Export Citation
  • Pal, S., , and M. Haeffelin, 2015: Forcing mechanisms governing diurnal, seasonal, and interannual variability in the boundary layer depths: Five years of continuous lidar observations over a suburban site near Paris. J. Geophys. Res. Atmos., 120, 11 93611 956, doi:10.1002/2015JD023268.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , and B. Stevens, 2009: Monte Carlo spectral integration: A consistent approximation for radiative transfer in large eddy simulations. J. Adv. Model. Earth Syst., 1 (1), doi:10.3894/JAMES.2009.1.1.

    • Search Google Scholar
    • Export Citation
  • Price, J. D., 1999: Observations of stratocumulus cloud break-up over land. Quart. J. Roy. Meteor. Soc., 125, 441468, doi:10.1002/qj.49712555404.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., , and R. Garreaud, 2010: Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx—Part 2: Synoptic variability. Atmos. Chem. Phys., 10, 45074519, doi:10.5194/acp-10-4507-2010.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , J. A. Coakley, , D. H. Lenschow, , C. W. Fairall, , and R. A. Kropfli, 1984: Outlook for research on subtropical marine stratification clouds. Bull. Amer. Meteor. Soc., 65, 12901301, doi:10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rieck, M., , C. Hohenegger, , and C. C. van Heerwaarden, 2014: The influence of land surface heterogeneities on cloud size development. Mon. Wea. Rev., 142, 38303846, doi:10.1175/MWR-D-13-00354.1.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., , B. Stevens, , and R. Pincus, 2010: On the transitions in marine boundary layer cloudiness. Atmos. Chem. Phys., 10, 23772391, doi:10.5194/acp-10-2377-2010.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., , and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605, doi:10.1175/2007JAS2456.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, R. E., , A. Gershunov, , S. F. Iacobellis, , and D. R. Cayan, 2014: North American west coast summer low cloudiness: Broadscale variability associated with sea surface temperature. Geophys. Res. Lett., 41, 33073314, doi:10.1002/2014GL059825.

    • Search Google Scholar
    • Export Citation
  • Shettle, E. P., , and J. A. Weinman, 1970: The transfer of solar irradiance through inhomogeneous turbid atmospheres evaluated by Eddington’s approximation. J. Atmos. Sci., 27, 10481055, doi:10.1175/1520-0469(1970)027<1048:TTOSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skupniewicz, C. E., , J. W. Glendening, , and R. F. Kamada, 1991: Boundary-layer transition across a stratocumulus cloud edge in a coastal zone. Mon. Wea. Rev., 119, 23372357, doi:10.1175/1520-0493(1991)119<2337:BLTAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • SolarAnywhere, 2014: SolarAnywhere Data. Clean Power Research 2014. [Available online at http://www.solaranywhere.com.]

  • Stevens, B., 2002: Entrainment in stratocumulus-topped mixed layers. Quart. J. Roy. Meteor. Soc., 128, 26632690, doi:10.1256/qj.01.202.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2010: Cloud-top entrainment instability? J. Fluid Mech., 660, 1, doi:10.1017/S0022112010003575.

  • Stevens, B., and et al. , 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593, doi:10.1175/BAMS-84-5-579.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and et al. , 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, doi:10.1175/MWR2930.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , C. H. Moeng, , B. Stevens, , D. H. Lenschow, , and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, doi:10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, S. V., , D. R. Cayan, , N. E. Graham, , and K. P. Georgakakos, 2008: Northerly surface winds over the eastern North Pacific Ocean in spring and summer. J. Geophys. Res., 113, D02110, doi:10.1029/2006JD008053.

    • Search Google Scholar
    • Export Citation
  • Uchida, J., , C. S. Bretherton, , and P. N. Blossey, 2010: The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: Do LES and mixed-layer models agree? Atmos. Chem. Phys., 10, 40974109, doi:10.5194/acp-10-4097-2010.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., , C. S. Bretherton, , and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29, 2092, doi:10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., , and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65, 14811504, doi:10.1175/2007JAS2438.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , C. S. Bretherton, , P. N. Blossey, , S. Bony, , F. Brient, , and J.-C. Golaz, 2012: The CGILS experimental design to investigate low cloud feedbacks in general circulation models by using single-column and large-eddy simulation models. J. Adv. Model. Earth Syst., 4, M12001, doi:10.1029/2012MS000182.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., , B. Albrecht, , and J. Gottschalck, 2001: Formation and development of nocturnal boundary layer clouds over the southern Great Plains. J. Atmos. Sci., 58, 14091426, doi:10.1175/1520-0469(2001)058<1409:FADONB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 6
PDF Downloads 38 38 6

Factors Controlling Stratocumulus Cloud Lifetime over Coastal Land

View More View Less
  • 1 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
  • | 2 Department of Physics, Cleveland State University, Cleveland, Ohio
  • | 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 4 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

The breakup of stratocumulus clouds over coastal land areas is studied using a combination of large-eddy simulations (LESs) and mixed-layer models (MLMs) with a focus on mechanisms regulating the timing of the breakup. In contrast with stratocumulus over ocean, strong sensible heat flux over land prevents the cloud layer from decoupling during day. As the cloud thins during day, turbulence generated by surface flux becomes larger than turbulence generated by longwave cooling across the cloud layer. To capture this shift in turbulence generation in the MLM, an existing entrainment parameterization is extended. The MLM is able to mimic cloud evolution for a variety of Bowen ratios, but only after this modification of the entrainment parameterization. Cloud lifetime depends on a combination of the cloud-top entrainment flux, the Bowen ratio of the surface, and the strength of advection of cool ocean air by the sea breeze. For dry land surface conditions, the authors’ MLM suggests a breakup time a few hours after sunrise. For relatively wet land surface conditions, the cloud layer briefly breaks into partly cloudy conditions during midday, and the stratocumulus cloud reforms in the evening.

Corresponding author address: Mohamed Ghonima, University of California, San Diego, 9500 Gilman Dr., Bldg. EBU II, Room 304, La Jolla, CA 92093-0411. E-mail: mghonima@ucsd.edu

Abstract

The breakup of stratocumulus clouds over coastal land areas is studied using a combination of large-eddy simulations (LESs) and mixed-layer models (MLMs) with a focus on mechanisms regulating the timing of the breakup. In contrast with stratocumulus over ocean, strong sensible heat flux over land prevents the cloud layer from decoupling during day. As the cloud thins during day, turbulence generated by surface flux becomes larger than turbulence generated by longwave cooling across the cloud layer. To capture this shift in turbulence generation in the MLM, an existing entrainment parameterization is extended. The MLM is able to mimic cloud evolution for a variety of Bowen ratios, but only after this modification of the entrainment parameterization. Cloud lifetime depends on a combination of the cloud-top entrainment flux, the Bowen ratio of the surface, and the strength of advection of cool ocean air by the sea breeze. For dry land surface conditions, the authors’ MLM suggests a breakup time a few hours after sunrise. For relatively wet land surface conditions, the cloud layer briefly breaks into partly cloudy conditions during midday, and the stratocumulus cloud reforms in the evening.

Corresponding author address: Mohamed Ghonima, University of California, San Diego, 9500 Gilman Dr., Bldg. EBU II, Room 304, La Jolla, CA 92093-0411. E-mail: mghonima@ucsd.edu
Save