• Barnes, E. A., , and D. L. Hartmann, 2010: Dynamical feedbacks and the persistence of the NAO. J. Atmos. Sci., 67, 851865, doi:10.1175/2009JAS3193.1.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benedict, J., , S. Lee, , and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144, doi:10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, M., , and M. Mak, 1990: Symbiotic relation between planetary and synoptic-scale waves. J. Atmos. Sci., 47, 29532968, doi:10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2006: An idealized nonlinear model of the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 63, 18181839, doi:10.1175/JAS3726.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci., 56, 17081728, doi:10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , and P. Zurita-Gotor, 2007: Simulating the seasonal cycle of the Northern Hemisphere storm tracks using idealized nonlinear storm-track models. J. Atmos. Sci., 64, 23092331, doi:10.1175/JAS3957.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , I. M. Held, , and W. A. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915, doi:10.1175/JAS3995.1.

    • Search Google Scholar
    • Export Citation
  • Drouard, M., , G. Rivière, , and P. Arbogast, 2013: The North Atlantic Oscillation response to large-scale atmospheric anomalies in the northeast Pacific. J. Atmos. Sci., 70, 28542874, doi:10.1175/JAS-D-12-0351.1.

    • Search Google Scholar
    • Export Citation
  • Esler, J. G., , and P. H. Haynes, 1999: Mechanisms for wave packet formation and maintenance in a quasigeostrophic two-layer model. J. Atmos. Sci., 56, 24572490, doi:10.1175/1520-0469(0)056<2457:MFWPFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13, 44304440, doi:10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, doi:10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., , S. Lee, , and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, doi:10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haines, K., , and J. Marshall, 1987: Eddy-forced coherent structures as a prototype of atmospheric blocking. Quart. J. Roy. Meteor. Soc., 113, 681704, doi:10.1002/qj.49711347613.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , Y. Kushnir, , G. Ottersen, , and M. Visbeck, Eds., 2003: The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 279 pp.

  • Jiang, Z. N., , M. Mu, , and D. H. Luo, 2013: A study of the North Atlantic Oscillation using conditional nonlinear optimal perturbation. J. Atmos. Sci., 70, 855875, doi:10.1175/JAS-D-12-0148.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., , L. L. Pan, , and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 16771694, doi:10.1175/JAS3715.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , G. K. Vallis, , S. M. Dean, , and J. A. Renwick, 2011: Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J. Climate, 24, 37643780, doi:10.1175/2010JCLI3738.1.

    • Search Google Scholar
    • Export Citation
  • Kok, C. J., , J. D. Opsteegh, , and H. M. van den Dool, 1987: Linear models: Useful tools to analyze GCM results. Mon. Wea. Rev., 115, 19962008, doi:10.1175/1520-0493(1987)115<1996:LMUTTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunz, T., , K. Fraedrich, , and F. Lunkeit, 2009: Synoptic scale wave breaking and its potential to drive NAO-like circulation dipoles: A simplified GCM approach. Quart. J. Roy. Meteor. Soc., 135, 119, doi:10.1002/qj.351.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., , and J. M. Wallace, 1989: Low-frequency variability in the Northern Hemisphere winter: Geographical distribution, structure and time-scale dependence. J. Atmos. Sci., 46, 31223143, doi:10.1175/1520-0469(1989)046<3122:LFVITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2014a: Understanding midlatitude jet variability and change using Rossby wave chromatography: Poleward-shifted jets in response to external forcing. J. Atmos. Sci., 71, 23702389, doi:10.1175/JAS-D-13-0200.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2014b: Understanding midlatitude jet variability and change using Rossby wave chromatography: Wave–mean flow interaction. J. Atmos. Sci., 71, 36843705, doi:10.1175/JAS-D-13-0201.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D. H., , and J. Cha, 2012: The North Atlantic Oscillation and the North Atlantic jet variability: Precursors to NAO regimes and transitions. J. Atmos. Sci., 69, 37633787, doi:10.1175/JAS-D-12-098.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D. H., , A. R. Lupo, , and H. Wan, 2007a: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 328, doi:10.1175/JAS3818.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D. H., , T. T. Gong, , and Y. N. Diao, 2007b: Dynamics of eddy-driven low-frequency dipole modes. Part III: Meridional displacement of westerly jet anomalies during two phases of NAO. J. Atmos. Sci., 64, 32323248, doi:10.1175/JAS3998.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D. H., , T. T. Gong, , and Y. N. Diao, 2008: Dynamics of eddy-driven low-frequency dipole modes. Part IV: Planetary and synoptic wave-breaking processes during the NAO life cycle. J. Atmos. Sci., 65, 737765, doi:10.1175/2007JAS2440.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D. H., , J. Cha, , L. H. Zhong, , and A. G. Dai, 2014: A nonlinear multiscale interaction model for atmospheric blocking: The eddy-blocking matching mechanism. Quart. J. Roy. Meteor. Soc., 140, 17851808, doi:10.1002/qj.2337.

    • Search Google Scholar
    • Export Citation
  • Luo, D. H., , L. H. Zhong, , and C. L. E. Franzke, 2015: Inverse energy cascades in an eddy-induced NAO-type flow: Scale interaction mechanism. J. Atmos. Sci., 72, 34173448, doi:10.1175/JAS-D-15-0062.1.

    • Search Google Scholar
    • Export Citation
  • Ren, H. L., , F. F. Jin, , J. S. Kug, , J. X. Zhao, , and J. Park, 2009: A kinematic mechanism for positive feedback between synoptic eddies and NAO. Geophys. Res. Lett., 36, L11709, doi:10.1029/2009GL037294.

    • Search Google Scholar
    • Export Citation
  • Ren, H. L., , F. F. Jin, , and L. Gao, 2012: Anatomy of synoptic eddy–NAO interaction through eddy structure decomposition. J. Atmos. Sci., 69, 21712191, doi:10.1175/JAS-D-11-069.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., , and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, doi:10.1175/JAS3850.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415422, doi:10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761, doi:10.1002/qj.49710946204.

    • Search Google Scholar
    • Export Citation
  • Song, J., , C. Y. Li, , and W. Zhou, 2014: High and low latitude types of the downstream influences of the North Atlantic Oscillation. Climate Dyn., 42, 10971111, doi:10.1007/s00382-013-1844-3.

    • Search Google Scholar
    • Export Citation
  • Tan, G. R., , F. F. Jin, , H. L. Ren, , and Z. B. Sun, 2014: The role of eddy feedback in the excitation of the NAO. Meteor. Appl., 21, 768776, doi:10.1002/met.1415.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • van Loon, H., , and J. C. Rogers, 1978: The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon. Wea. Rev., 106, 296310, doi:10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2009: Self-limiting feedback between baroclinic waves and a NAO-like sheared zonal flow. Geophys. Res. Lett., 36, L08803, doi:10.1029/2009GL037176.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J., , and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437, doi:10.1175/2009JAS3194.1.

    • Search Google Scholar
    • Export Citation
  • Xia, X. M., , and E. K. M. Chang, 2014: Diabatic damping of zonal index variations. J. Atmos. Sci., 71, 30903105, doi:10.1175/JAS-D-13-0292.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , X. Q. Yang, , Y. Nie, , and G. Chen, 2012: Annular mode–like variation in a multilayer quasigeostrophic model. J. Atmos. Sci., 69, 29402958, doi:10.1175/JAS-D-11-0214.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 1
PDF Downloads 20 20 1

Understanding Anomalous Eddy Vorticity Forcing in North Atlantic Oscillation Events

View More View Less
  • 1 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

This study proposes an anomalous eddy vorticity forcing (EVF) decomposing procedure to investigate physical mechanisms responsible for the formation of the anomalous EVF associated with North Atlantic Oscillation (NAO) events. Utilizing the Geophysical Fluid Dynamics Laboratory (GFDL) dynamical core atmospheric model, a series of NAO initial-value short-term experiments are conducted. Applying the EVF decomposing procedure to the results of these experiments, the anomalous nonlinear EVF associated with the NAO events in the model can be decomposed into several fundamental linear eddy–eddy interaction terms and an unimportant nonlinear eddy–eddy interaction term. Compared with the NAO-free situation, synoptic-scale eddies have faster (slower) eastward phase speeds during the positive (negative) NAO events. Through a synoptic-scale eddy–eddy interaction mechanism, the behaviors of anomalous EVF components in the positive (negative) NAO events are well explained by synoptic-scale eddies with faster (slower) eastward phase speeds. Therefore, synoptic-scale eddies with faster (slower) eastward phase speeds are responsible for the development of the anomalous EVF associated with positive (negative) NAO events. Note that at the initial stage of the NAO initial-value experiments, the faster (slower) phase speeds of the synoptic-scale eddies are specified by modifying the initial-value fields and then are amplified/maintained by the strengthening (weakening) zonal wind in the middle and high latitudes associated with the approaching positive (negative)-phase NAO. Therefore, this study indicates that the properties of the synoptic-scale eddies at the initial stage determine the upcoming NAO anomalies.

Denotes Open Access content.

Corresponding author address: Jie Song, LASG, P.O. Box 9804, Beijing 100029, China. E-mail: song_jie@mail.iap.ac.cn

Abstract

This study proposes an anomalous eddy vorticity forcing (EVF) decomposing procedure to investigate physical mechanisms responsible for the formation of the anomalous EVF associated with North Atlantic Oscillation (NAO) events. Utilizing the Geophysical Fluid Dynamics Laboratory (GFDL) dynamical core atmospheric model, a series of NAO initial-value short-term experiments are conducted. Applying the EVF decomposing procedure to the results of these experiments, the anomalous nonlinear EVF associated with the NAO events in the model can be decomposed into several fundamental linear eddy–eddy interaction terms and an unimportant nonlinear eddy–eddy interaction term. Compared with the NAO-free situation, synoptic-scale eddies have faster (slower) eastward phase speeds during the positive (negative) NAO events. Through a synoptic-scale eddy–eddy interaction mechanism, the behaviors of anomalous EVF components in the positive (negative) NAO events are well explained by synoptic-scale eddies with faster (slower) eastward phase speeds. Therefore, synoptic-scale eddies with faster (slower) eastward phase speeds are responsible for the development of the anomalous EVF associated with positive (negative) NAO events. Note that at the initial stage of the NAO initial-value experiments, the faster (slower) phase speeds of the synoptic-scale eddies are specified by modifying the initial-value fields and then are amplified/maintained by the strengthening (weakening) zonal wind in the middle and high latitudes associated with the approaching positive (negative)-phase NAO. Therefore, this study indicates that the properties of the synoptic-scale eddies at the initial stage determine the upcoming NAO anomalies.

Denotes Open Access content.

Corresponding author address: Jie Song, LASG, P.O. Box 9804, Beijing 100029, China. E-mail: song_jie@mail.iap.ac.cn
Save