• Artru, J., , V. Ducic, , H. Kanamori, , P. Lognonné, , and M. Murakami, 2005: Ionospheric detection of gravity waves induced by tsunamis. Geophys. J. Int., 160, 840848, doi:10.1111/j.1365-246X.2005.02552.x.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., , and C. J. R. Garrett, 1968: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London, 302, 529554, doi:10.1098/rspa.1968.0034.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., , S. D. Eckermann, , and D. P. Drob, 2014: The partial reflection of tsunami-generated gravity waves. J. Atmos. Sci., 71, 34163426, doi:10.1175/JAS-D-13-0309.1.

    • Search Google Scholar
    • Export Citation
  • Coïsson, P., , P. Lognonné, , D. Walwer, , and L. M. Rolland, 2015: First tsunami gravity wave detection in ionospheric radio occultation data. Earth Space Sci., 2, 125133, doi:10.1002/2014EA000054.

    • Search Google Scholar
    • Export Citation
  • Ding, F., , W. Wan, , and H. Yuan, 2003: The influence of background winds and attenuation on the propagation of atmospheric gravity waves. J. Atmos. Sol.-Terr. Phys., 65, 857869, doi:10.1016/S1364-6826(03)00090-7.

    • Search Google Scholar
    • Export Citation
  • Drob, D. P., and et al. , 2008: An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res., 113, A12304, doi:10.1029/2008JA013668.

    • Search Google Scholar
    • Export Citation
  • Fröman, N., , and P. O. Fröman, 2002: Physical Problems Solved by the Phase-Integral Method. Cambridge University Press, 232 pp.

  • Galvan, D. A., , A. Komjathy, , M. P. Hickey, , and A. J. Mannucci, 2011: The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content. J. Geophys. Res., 116, A06318, doi:10.1029/2010JA016204.

    • Search Google Scholar
    • Export Citation
  • Galvan, D. A., , A. Komjathy, , M. P. Hickey, , P. Stephens, , J. Snively, , Y. Tony Song, , M. D. Butala, , and A. J. Mannucci, 2012: Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter. Radio Sci., 47, RS4003, doi:10.1029/2012RS005023.

    • Search Google Scholar
    • Export Citation
  • Hickey, M. P., , G. Schubert, , and R. L. Walterscheid, 2009: Propagation of tsunami-driven gravity waves into the thermosphere and ionosphere. J. Geophys. Res., 114, A08304, doi:10.1029/2009JA014105.

    • Search Google Scholar
    • Export Citation
  • Hickey, M. P., , R. L. Walterscheid, , and G. Schubert, 2010: Wave mean flow interactions in the thermosphere induced by a major tsunami. J. Geophys. Res., 115, A09309, doi:10.1029/2009JA014927.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1960: Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38, 14411481, doi:10.1139/p60-150.

  • Lighthill, M. J., 2001: Waves in Fluids. 6th ed. Cambridge University Press, 524 pp.

  • Liu, J.-Y., , Y.-B. Tsai, , K.-F. Ma, , Y.-I. Chen, , H.-F. Tsai, , C.-H. Lin, , M. Kamogawa, , and C.-P. Lee, 2006: Ionospheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami. J. Geophys. Res., 111, A05303, doi:10.1029/2005JA011200.

    • Search Google Scholar
    • Export Citation
  • Mai, C.-L., , and J.-F. Kiang, 2009: Modeling of ionospheric perturbation by 2004 Sumatra tsunami. Radio Sci., 44, RS3011, doi:10.1029/2008RS004060.

    • Search Google Scholar
    • Export Citation
  • Occhipinti, G., , P. Lognonné, , E. A. Kherani, , and H. Hébert, 2006: Three-dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami. Geophys. Res. Lett., 33, L20104, doi:10.1029/2006GL026865.

    • Search Google Scholar
    • Export Citation
  • Occhipinti, G., , E. A. Kherani, , and P. Lognonn, 2008: Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves. Geophys. J. Int., 173, 753765, doi:10.1111/j.1365-246X.2008.03760.x.

    • Search Google Scholar
    • Export Citation
  • Occhipinti, G., , P. Coïsson, , J. J. Makela, , S. Allgeyer, , A. Kherani, , H. Hebert, , and P. Lognonné, 2011: Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere. Earth Planets Space, 63, 847851, doi:10.5047/eps.2011.06.051.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., , and C. O. Hines, 1976: On the possible detection of tsunamis by a monitoring of the ionosphere. J. Geophys. Res., 81, 19952000, doi:10.1029/JC081i012p01995.

    • Search Google Scholar
    • Export Citation
  • Picone, J. M., , A. E. Hedin, , D. P. Drob, , and A. C. Aikin, 2002: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res., 107, 1468, doi:10.1029/2002JA009430.

    • Search Google Scholar
    • Export Citation
  • Rolland, L. M., , G. Occhipinti, , P. Lognonné, , and A. Loevenbruck, 2010: Ionospheric gravity waves detected offshore Hawaii after tsunamis. Geophys. Res. Lett., 37, L17101, doi:10.1029/2010GL044479.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Elsevier, 87–230, doi:10.1016/S0065-2687(08)60262-9.

  • Wei, C., , O. Bühler, , and E. G. Tabak, 2015: Evolution of tsunami-induced internal acoustic–gravity waves. J. Atmos. Sci., 72, 23032317, doi:10.1175/JAS-D-14-0179.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 18
PDF Downloads 70 70 15

The Propagation of Tsunami-Generated Acoustic–Gravity Waves in the Atmosphere

View More View Less
  • 1 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
  • | 2 Computational Physics, Inc., Springfield, Virginia
  • | 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

Tsunami-generated acoustic–gravity waves have been observed to propagate in the atmosphere up to the ionosphere, where they have an impact on the total electron content. The authors simulate numerically the propagation of two-dimensional linear acoustic–gravity waves in an atmosphere with vertically varying stratification and horizontal background winds. The authors’ goal is to compare the difference in how much energy reaches the lower ionosphere up to an altitude of 180 km, where the atmosphere is assumed to be anelastic or fully compressible. The authors consider three specific atmospheric cases: a uniformly stratified atmosphere without winds, an idealized case with a wind jet, and a realistic case with an atmospheric profile corresponding to the 2004 Sumatra tsunami. Results show that for the last two cases, the number and height of turning points are different for the anelastic and compressible assumptions, and the net result is that compressibility enhances the total transmission of energy through the whole atmosphere.

Corresponding author address: Yue Wu, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0411. E-mail: wuyue@ucsd.edu

Abstract

Tsunami-generated acoustic–gravity waves have been observed to propagate in the atmosphere up to the ionosphere, where they have an impact on the total electron content. The authors simulate numerically the propagation of two-dimensional linear acoustic–gravity waves in an atmosphere with vertically varying stratification and horizontal background winds. The authors’ goal is to compare the difference in how much energy reaches the lower ionosphere up to an altitude of 180 km, where the atmosphere is assumed to be anelastic or fully compressible. The authors consider three specific atmospheric cases: a uniformly stratified atmosphere without winds, an idealized case with a wind jet, and a realistic case with an atmospheric profile corresponding to the 2004 Sumatra tsunami. Results show that for the last two cases, the number and height of turning points are different for the anelastic and compressible assumptions, and the net result is that compressibility enhances the total transmission of energy through the whole atmosphere.

Corresponding author address: Yue Wu, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0411. E-mail: wuyue@ucsd.edu
Save