• Adams, D. K., , and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and et al. , 2009: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, doi:10.2151/jmsj.87A.119.

    • Search Google Scholar
    • Export Citation
  • Barstad, I., , and R. B. Smith, 2005: Evaluation of an orographic precipitation model. J. Hydrometeor., 6, 8599, doi:10.1175/JHM-404.1.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., , and R. R. Braham Jr., 1949: The Thunderstorm: Final Report of the Thunderstorm Project. U.S. Government Printing Office, 282 pp.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , Z. Wang, , J. McBride, , and C.-H. Liu, 2005: Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, doi:10.1175/JCLI-3257.1.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , G. Bryan, , and S. C. van den Heever, 2011: Storm and Cloud Dynamics. Academic Press, 820 pp.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., , R. Maddox, , K. Howard, , and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651667, doi:10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , and M. J. Manton, 1998: Performance of satellite rainfall estimation algorithms during TOGA COARE. J. Atmos. Sci., 55, 15371557, doi:10.1175/1520-0469(1998)055<1537:POSREA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and et al. , 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Ferraro, R., and et al. , 2005: NOAA operational hydrological products derived from the Advanced Microwave Sounding Unit. IEEE Trans. Geosci. Remote Sens., 43, 10361049, doi:10.1109/TGRS.2004.843249.

    • Search Google Scholar
    • Export Citation
  • Hamada, A., , Y. N. Takayabu, , C. Liu, , and E. J. Zipser, 2015: Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun., 6, 6213, doi:10.1038/ncomms7213.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Academic Press, 432 pp.

  • Hoyos, C. D., , and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424, doi:10.1175/JCLI4252.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , J. Kwiatkowski, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., , and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19, 21052117, doi:10.1175/JCLI3722.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., , and R. B. Smith, 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60, 15431559, doi:10.1175/2995.1.

  • Johnson, R. H., , P. E. Ciesielski, , and K. A. Hart, 1996: Tropical inversions near the 0°C level. J. Atmos. Sci., 53, 18381855, doi:10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kato, T., , S. Hayashi, , and M. Yoshizaki, 2007: Statistical study on cloud top height of cumulonimbi thermodynamically estimated from objective analysis data during the Baiu season. J. Meteor. Soc. Japan, 85, 529557, doi:10.2151/jmsj.85.529.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., , T. Ushio, , S. Shige, , S. Kida, , M. Kachi, , and K. Okamoto, 2009: Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. J. Meteor. Soc. Japan, 87A, 203222, doi:10.2151/jmsj.87A.203.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., , A. Hazra, , and B. N. Goswami, 2014: Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar coast and the Western Ghats. Climate Dyn., 43, 911924, doi:10.1007/s00382-013-1909-3.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , D. L. Randel, , M. Kulie, , N.-Y. Wang, , R. Ferraro, , S. J. Munchak, , and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, doi:10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, E.-H., , B.-J. Sohn, , D.-E. Chang, , M.-H. Ahn, , and S. Yang, 2008: Use of numerical forecasts for improving TMI rain retrievals over the mountainous area in Korea. J. Appl. Meteor. Climatol., 47, 19952007, doi:10.1175/2007JAMC1857.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 630 pp.

  • Manohar, G. K., , S. S. Kandalgaonkar, , and M. I. R. Tinmaker, 1999: Thunderstorm activity over India and the Indian southwest monsoon. J. Geophys. Res., 104, 41694188, doi:10.1029/98JD02592.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., , and R. R. Ferraro, 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., , and J. Matsumoto, 1994: Summer monsoon over the Asian continent and western North Pacific. J. Meteor. Soc. Japan, 72, 719745.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., , and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14, 35663586, doi:10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., , S. A. Rutledge, , and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124, 602620, doi:10.1175/1520-0493(1996)124<0602:CTGLOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richards, F., , and P. Arkin, 1981: On the relationship between satellite observed cloud cover and precipitation. Mon. Wea. Rev., 109, 10811093, doi:10.1175/1520-0493(1981)109<1081:OTRBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Rotunno, R., , J. B. Klemp, , and M. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463458, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sakakibara, H., 1981: Heavy rainfall from very shallow convective clouds. J. Meteor. Soc. Japan, 59, 387394.

  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127, 29772991, doi:10.1175/1520-0493(1999)127<2977:CPAPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Y. N. Takayabu, , W.-K. Tao, , and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113, doi:10.1175/1520-0450(2004)043<1095:SROLHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Y. N. Takayabu, , W.-K. Tao, , and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 10981124, doi:10.1175/JAM2510.1.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Y. N. Takayabu, , and W.-K. Tao, 2008: Spectral retrieved of latent heating profiles from TRMM PR data. Part III: Moistening estimates over the tropical ocean regions. J. Appl. Meteor. Climatol., 47, 620640, doi:10.1175/2007JAMC1738.1.

    • Search Google Scholar
    • Export Citation
  • Shige, S., and et al. , 2009a: The GSMaP precipitation retrieval algorithm for microwave sounders—Part I: Over-ocean algorithm. IEEE Trans. Geosci. Remote Sens., 47, 30843097, doi:10.1109/TGRS.2009.2019954.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Y. N. Takayabu, , S. Kida, , W.-K. Tao, , X. Zeng, , and T. L’Ecuyer, 2009b: Spectral retrieved of latent heating profiles from TRMM PR data. Part VI: Comparisons of lookup tables from two- and three-dimensional simulations. J. Climate, 22, 55775594, doi:10.1175/2009JCLI2919.1.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , S. Kida, , H. Ashiwake, , T. Kubota, , and K. Aonashi, 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, doi:10.1175/JAMC-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , M. K. Yamamoto, , and A. Taniguchi, 2015: Improvement of TMI rain retrieval over the Indian subcontinent. Remote Sensing of the Terrestrial Water Cycle, Geophys. Monogr., Vol. 206, Amer. Geophys. Union, 27–42, doi:10.1002/9781118872086.ch2.

  • Smith, R. B., 2003: A linear upslope-time-delay model for orographic precipitation. J. Hydrol., 282, 29, doi:10.1016/S0022-1694(03)00248-8.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, doi:10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , G.-H. Ryu, , H.-J. Song, , and M.-L. Ou, 2013: Characteristic features of warm-type rain producing heavy rainfall over the Korean peninsula inferred from TRMM measurements. Mon. Wea. Rev., 141, 38733888, doi:10.1175/MWR-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Song, H.-J., , and B.-J. Sohn, 2015: Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study. Mon. Wea. Rev., 143, 363382, doi:10.1175/MWR-D-14-00184.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., 1984: Satellite passive microwave rain rate measurement over croplands during spring, summer and fall. J. Climate Appl. Meteor., 23, 15531562, doi:10.1175/1520-0450(1984)023<1553:SPMRRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, doi:10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 2006: Rain-yield per flash calculated from TRMM PR and LIS data and its relationship to the contribution of tall convective rain. Geophys. Res. Lett., 33, L18705, doi:10.1029/2006GL027531.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , J. Yokomori, , and K. Yoneyama, 2006: A diagnostic study on interactions between atmospheric thermodynamic structure and cumulus convection over the tropical western Pacific Ocean and over the Indochina Peninsula. J. Meteor. Soc. Japan, 84A, 151169, doi:10.2151/jmsj.84A.151.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , S. Shige, , W.-K. Tao, , and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 20302046, doi:10.1175/2009JCLI3110.1.

    • Search Google Scholar
    • Export Citation
  • Takeda, T., , and K. Takase, 1980: Radar observation of rainfall system modified by orographic effects. J. Meteor. Soc. Japan, 58, 500516.

    • Search Google Scholar
    • Export Citation
  • Takeda, T., , N. Moriyama, , and Y. Iwasaka, 1976: A case study of heavy rain in Owase area. J. Meteor. Soc. Japan, 54, 3241.

  • Takemi, T., , O. Hirayama, , and C. Liu, 2004: Factors responsible for the vertical development of tropical oceanic cumulus convection. Geophys. Res. Lett., 31, L11109, doi:10.1029/2004GL020225.

    • Search Google Scholar
    • Export Citation
  • Taniguchi, A., and et al. , 2013: Improvement of high-resolution satellite rainfall product for Typhoon Morakot (2009) over Taiwan. J. Hydrometeor., 14, 18591871, doi:10.1175/JHM-D-13-047.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , S. Lang, , X. Zeng, , S. Shige, , and Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 18741893, doi:10.1175/2009JCLI3278.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and LinHo, 2002: Rainy seasons of the Asian–Pacific monsoon. J. Climate, 15, 386398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weng, F., , L. Zhao, , R. R. Ferraro, , G. Poe, , X. Li, , and N. C. Grody, 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38, 8068, doi:10.1029/2002RS002679.

    • Search Google Scholar
    • Export Citation
  • Werner, M., 2001: Shuttle Radar Topography Mission (SRTM) mission overview. Frequenz, 55, 7579, doi:10.1515/FREQ.2001.55.3-4.75.

  • Xie, S. P., , H. M. Xu, , N. H. Saji, , Y. Q. Wang, , and W. T. Liu, 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19, 34203429, doi:10.1175/JCLI3777.1.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., , and S. Shige, 2015: Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers. Atmos. Res., 163, 3647, doi:10.1016/j.atmosres.2014.07.024.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and et al. , 2006: Melting layer cloud observed during R/V Mirai cruise MR01-K05. J. Atmos. Sci., 63, 30203032, doi:10.1175/JAS3779.1.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., , and J. Matsumoto, 2008: Collaborative effects of cold surge and tropical depression–type disturbance on heavy rainfall in central Vietnam. Mon. Wea. Rev., 136, 32753287, doi:10.1175/2008MWR2456.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. Z., , H. Uyeda, , H. Yamada, , B. Geng, , and Y. Ni, 2006: Characteristics of mesoscale convective systems over east part of continental China during the Meiyu from 2001 to 2003. J. Meteor. Soc. Japan, 84, 763782, doi:10.2151/jmsj.84.763.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the Tropics with and without lightning. Mon. Wea. Rev., 122, 18371851, doi:10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, doi:10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 157 36
PDF Downloads 100 100 30

Precipitation-Top Heights of Heavy Orographic Rainfall in the Asian Monsoon Region

View More View Less
  • 1 Graduate School of Science, Kyoto University, Kyoto, Japan
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Over coastal mountain ranges of the Asian monsoon region, heavy orographic rainfall is frequently associated with low precipitation-top heights (PTHs). This leads to conspicuous underestimation of rainfall using microwave radiometer algorithms, which conventionally assume that heavy rainfall is associated with high PTHs. Although topographically forced upward motion is important for rainfall occurrence, it does not fully constrain precipitation profiles in this region. This paper focuses on the thermodynamic characteristics of the atmosphere that determine PTHs in tropical coastal mountains of Asia (Western Ghats, Arakan Yoma, Bilauktaung, Cardamom, Annam Range, and the Philippines).

PTHs of heavy orographic rainfall generally decrease with enhanced low- and midlevel relative humidity, especially during the summer monsoon. In contrast, PTHs over the Annam Range of the Indochina Peninsula increase with enhanced low-level and midlevel relative humidity during the transition from boreal summer to winter monsoon, demonstrating that convection depth is not simply a function of humidity. Instead, PTHs of heavy orographic rainfall decreased with increasing low-level stability for all monsoon regions considered in this study, as well as the Annam Range during the transition from boreal summer to winter monsoon. Therefore, low-level static stability, which inhibits cloud growth and promotes cloud detrainment, appears to be the most important parameter in determining PTHs of heavy rainfall in the Asian monsoon region.

Corresponding author address: Shoichi Shige, Graduate School of Science, Kyoto University, Kiashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. E-mail: shige@kugi.kyoto-u.ac.jp

Abstract

Over coastal mountain ranges of the Asian monsoon region, heavy orographic rainfall is frequently associated with low precipitation-top heights (PTHs). This leads to conspicuous underestimation of rainfall using microwave radiometer algorithms, which conventionally assume that heavy rainfall is associated with high PTHs. Although topographically forced upward motion is important for rainfall occurrence, it does not fully constrain precipitation profiles in this region. This paper focuses on the thermodynamic characteristics of the atmosphere that determine PTHs in tropical coastal mountains of Asia (Western Ghats, Arakan Yoma, Bilauktaung, Cardamom, Annam Range, and the Philippines).

PTHs of heavy orographic rainfall generally decrease with enhanced low- and midlevel relative humidity, especially during the summer monsoon. In contrast, PTHs over the Annam Range of the Indochina Peninsula increase with enhanced low-level and midlevel relative humidity during the transition from boreal summer to winter monsoon, demonstrating that convection depth is not simply a function of humidity. Instead, PTHs of heavy orographic rainfall decreased with increasing low-level stability for all monsoon regions considered in this study, as well as the Annam Range during the transition from boreal summer to winter monsoon. Therefore, low-level static stability, which inhibits cloud growth and promotes cloud detrainment, appears to be the most important parameter in determining PTHs of heavy rainfall in the Asian monsoon region.

Corresponding author address: Shoichi Shige, Graduate School of Science, Kyoto University, Kiashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. E-mail: shige@kugi.kyoto-u.ac.jp
Save