• Boé, J., , A. Hall, , and X. Qu, 2009: Current GCMs’ unrealistic negative feedback in the Arctic. J. Climate, 22, 46824695, doi:10.1175/2009JCLI2885.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., , and J. Lu, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Climate Dyn., 32, 887900, doi:10.1007/s00382-008-0424-4.

    • Search Google Scholar
    • Export Citation
  • Cai, M., , and K.-K. Tung, 2012: Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2 × CO2 experiments in an idealized GCM. J. Atmos. Sci., 69, 22562271, doi:10.1175/JAS-D-11-0117.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

  • Colman, R., 2002: Geographical contributions to global climate sensitivity in a general circulation model. Global Planet. Change, 32, 211243, doi:10.1016/S0921-8181(01)00142-4.

    • Search Google Scholar
    • Export Citation
  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865873.

  • Crook, J. A., , P. M. Forster, , and N. Stuber, 2011: Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Climate, 24, 35753592, doi:10.1175/2011JCLI3863.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568, doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , A. Lacis, , D. Rind, , G. Russell, , P. Stone, , I. Fung, , R. Ruedy, , and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 425 pp.

  • Held, I. M., , and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , S. Vavrus, , F. He, , N. Wen, , and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, doi:10.1175/JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , and M. Cai, 2009a: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32, 873885, doi:10.1007/s00382-008-0425-3.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , and M. Cai, 2009b: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36, L16704, doi:10.1029/2009GL040133.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , and M. Cai, 2010: Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Climate Dyn., 34, 669687, doi:10.1007/s00382-009-0673-x.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, doi:10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , R. J. Stouffer, , M. J. Spelman, , and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2006: A First Course in Atmospheric Radiation. Sundog Publishing, 476 pp.

  • Pincus, R., , H. W. Barker, , and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, doi:10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., , and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., , H. W. Barker, , M. F. Khairoutdinov, , J. Li, , and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 20472067, doi:10.1256/qj.03.99.

    • Search Google Scholar
    • Export Citation
  • Sejas, S. A., , O. S. Albert, , M. Cai, , and Y. Deng, 2014a: Feedback attribution of the land–sea warming contrast in a global warming simulation of the NCAR CCSM4. Environ. Res. Lett., 9, 124005, doi:10.1088/1748-9326/9/12/124005.

    • Search Google Scholar
    • Export Citation
  • Sejas, S. A., , M. Cai, , A. Hu, , G. A. Meehl, , W. Washington, , and P. C. Taylor, 2014b: Individual feedback contributions to the seasonality of surface warming. J. Climate, 27, 56535669, doi:10.1175/JCLI-D-13-00658.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , I. M. Held, , R. Colman, , K. M. Shell, , J. T. Kiehl, , and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Song, X., , G. J. Zhang, , and M. Cai, 2014a: Quantifying contributions of climate feedbacks to tropospheric warming in the NCAR CCSM3.0. Climate Dyn., 42, 901917, doi:10.1007/s00382-013-1805-x.

    • Search Google Scholar
    • Export Citation
  • Song, X., , G. J. Zhang, , and M. Cai, 2014b: Characterizing the climate feedback pattern in the NCAR CCSM3-SOM using hourly data. J. Climate, 27, 29122930, doi:10.1175/JCLI-D-13-00567.1.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , B. Dong, , and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., , R. G. Ellingson, , and M. Cai, 2011: Geographical distribution of climate feedbacks in the NCAR CCSM3.0. J. Climate, 24, 27372753, doi:10.1175/2010JCLI3788.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., , M. Cai, , A. Hu, , J. Meehl, , W. Washington, , and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 70237043, doi:10.1175/JCLI-D-12-00696.1.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., , and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701, doi:10.1029/2005GL025244.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., , M. Watanabe, , A. Abe-Ouchi, , H. Shiogama, , and T. Ogura, 2014: Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM. Climate Dyn., 42, 16131630, doi:10.1007/s00382-013-1875-9.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., , J. J. Hack, , J. T. Kiehl, , and R. D. Cess, 1994: Diagnostic study of climate feedback processes in atmospheric general circulation models. J. Geophys. Res., 99, 55255537, doi:10.1029/93JD03523.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 14
PDF Downloads 80 80 12

Isolating the Temperature Feedback Loop and Its Effects on Surface Temperature

View More View Less
  • 1 Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

Climate feedback processes are known to substantially amplify the surface warming response to an increase of greenhouse gases. When the forcing and feedbacks modify the temperature response they trigger temperature feedback loops that amplify the direct temperature changes due to the forcing and nontemperature feedbacks through the thermal–radiative coupling between the atmosphere and surface. This study introduces a new feedback-response analysis method that can isolate and quantify the effects of the temperature feedback loops of individual processes on surface temperature from their corresponding direct surface temperature responses.

The authors analyze a 1% yr−1 increase of CO2 simulation of the NCAR CCSM4 at the time of CO2 doubling to illustrate the new method. The Planck sensitivity parameter, which indicates colder regions experience stronger surface temperature responses given the same change in surface energy flux, is the inherent factor that leads to polar warming amplification (PWA). This effect explains the PWA in the Antarctic, while the direct temperature response to the albedo and cloud feedbacks further explains the greater PWA of the Arctic. Temperature feedback loops, particularly the one associated with the albedo feedback, further amplify the Arctic surface warming relative to the tropics. In the tropics, temperature feedback loops associated with the CO2 forcing and water vapor feedback cause most of the surface warming. Overall, the temperature feedback is responsible for most of the surface warming globally, accounting for nearly 76% of the global-mean surface warming. This is 3 times larger than the next largest warming contribution, indicating that the temperature feedback loop is the preeminent contributor to the surface warming.

Corresponding author address: Ming Cai, Department of Earth, Ocean, and Atmospheric Science, Florida State University, 1017 Academic Way, LOVE Building, Room 423, Tallahassee, FL 32306. E-mail: mcai@fsu.edu

Abstract

Climate feedback processes are known to substantially amplify the surface warming response to an increase of greenhouse gases. When the forcing and feedbacks modify the temperature response they trigger temperature feedback loops that amplify the direct temperature changes due to the forcing and nontemperature feedbacks through the thermal–radiative coupling between the atmosphere and surface. This study introduces a new feedback-response analysis method that can isolate and quantify the effects of the temperature feedback loops of individual processes on surface temperature from their corresponding direct surface temperature responses.

The authors analyze a 1% yr−1 increase of CO2 simulation of the NCAR CCSM4 at the time of CO2 doubling to illustrate the new method. The Planck sensitivity parameter, which indicates colder regions experience stronger surface temperature responses given the same change in surface energy flux, is the inherent factor that leads to polar warming amplification (PWA). This effect explains the PWA in the Antarctic, while the direct temperature response to the albedo and cloud feedbacks further explains the greater PWA of the Arctic. Temperature feedback loops, particularly the one associated with the albedo feedback, further amplify the Arctic surface warming relative to the tropics. In the tropics, temperature feedback loops associated with the CO2 forcing and water vapor feedback cause most of the surface warming. Overall, the temperature feedback is responsible for most of the surface warming globally, accounting for nearly 76% of the global-mean surface warming. This is 3 times larger than the next largest warming contribution, indicating that the temperature feedback loop is the preeminent contributor to the surface warming.

Corresponding author address: Ming Cai, Department of Earth, Ocean, and Atmospheric Science, Florida State University, 1017 Academic Way, LOVE Building, Room 423, Tallahassee, FL 32306. E-mail: mcai@fsu.edu
Save